
Water Electrolysis
𝐻ଶ𝑂 → 𝐻ଶ ൅

1
2𝑂ଶ
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Learning Objectives

• From this lecture you should be able to understand:
- The fundamental physics behind electrolyzers.

- How to improve the efficiency/costs of electrolyzers.
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The H2 economy
• The issue with the hydrogen economy is how do we produce hydrogen?

– Currently we use fossil fuels.

• Electrochemistry can provide the solution.

Immediate
Electical uses
Heating

Electrolyzer

Fuel Cell

H2

Storage

H2

e-

e-

Car 
(or other energy device)

H2O → H2 +O2

H2 +O2 → H2O

H2
Chemicals & 

plastics
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Electrolyzers- economic limits

• The DOE did a sensitivity analysis with regards to 
electrolyzer cost.

• There are certain areas we can ‘technology our way 
out of’.

• There are other areas we can’t (directly).

NREL Electrolyzer report
(NREL/BK-6A1-46676)

• Thermodynamically it takes 1.23 V to produce H2.  Thus at 0.1 €/KWh electricity, what is 
the minimum it would cost to produce 1 kg of H2?

∆𝐸 ൌ
െ∆G 
𝑛𝐹

Remember:

• If we operate our electrolyzer only 50% of the time, 
what will be our effective capital costs roughly?

 F =96485 C/mol
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Costs of Hydrogen

• Thermodynamically it takes 1.23 V to produce H2.  Thus at 0.1 €/KWh electricity, 
what is the minimum it would cost to produce 1 kg of H2.

∆𝐺 ൌ 𝐸𝑛𝐹 ൌ 1.23 ∗ 2 ∗ 96485 ൌ 237 ௞௃
௠௢௟ ுమ

=237 ெ௃
௞௠௢௟ ுమ

237 ெ௃
௞௠௢௟ ுమ

∗ ௞௠௢௟ ுమ
ଶ௞௚

*଴.ଶ଼ ௞ௐ௛
ெ௃

= 33,2 ௞ௐ௛
௞௚

33,2 ௞ௐ௛
௞௚

∗ 0,1 €
௞ௐ௛

= 3,32 €
𝒌𝒈

https://pub.norden.org/nordicenergyresearch2023-04/

Electricity prices in Denmark
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Electrolyzers
• Water electrolyzers only produce about 0.7% of the total H2 with steam reformation of 

natural gas producing most of the rest. (IEA, as of end of 2022)

• All the H2 the electrolyzers produce in 1 year corresponds to 79 TJ. This is enough 
energy storage to support the world for 4 seconds.

• Unlike fuel cells, you can keep adding voltage to get more H2 and O2.
• Fuel cells run from 0.2-1.5 A/cm2, electrolyzers run at 4-10 A/cm2.

• There are 3 major types of electrolyzers.
• Alkaline electrolyzers (done in a basic environment).

• Cation Exchange Membrane (CEM) electrolyzers (done in an acidic environment).

• Solid Oxide electrolyzers- can also work with organic/fossil fuels
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Alkaline (basic) electrolyzers
• Alkaline electrolyzers currently have the dominant market share.

• They are similar to an alkaline fuel cell, except done in reverse.

2𝑂𝐻ି →
1
2𝑂ଶ ൅ 𝐻ଶ𝑂 ൅ 2𝑒ି

𝐻ଶ𝑂 ൅ 2𝑒ି →  𝐻ଶ ൅2𝑂𝐻ିCathode:

Anode:

Overall: 𝐻ଶ𝑂 → 𝐻ଶ ൅
1
2𝑂ଶ           1.23 𝑉

• They typically use a diaphragm rather than a 
membrane to keep the gases from mixing.
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Alkaline electrolyzers
• The great thing about alkaline electrolyzers are they use cheap catalysts.

• Their major disadvantage is inefficient ionic conductivities / gas crossover.

• The alkaline electrolyte can easily cause corrosion as well.

2 MW Alkaline Electrolyzer

• Electrolyzer cells are stacked just like 
fuel cells.

• Each device to the right produces 
roughly 33 kg/hr of H2. 
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CEM electrolyzers
• The newer approach to electrolyzers is to basically run a cation exchange membrane 

fuel cell in reverse.

• The key advantage is that the efficiencies 
can be higher especially at high current 
densities.

• This is due to ionic conductivity advantages 
of a CEM

• The major issue with these is the best 
catalysts are noble metals. 

2𝐻ା  ൅ 2𝑒ି → 𝐻ଶ

𝐻ଶ𝑂 →
1
2𝑂ଶ ൅ 2𝐻ା  ൅ 2𝑒ିAnode:

Cathode:

Overall: 𝐻ଶ𝑂 →  𝐻ଶ ൅
1
2𝑂ଶ
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Competing Technologies
Advantages Disadvantages

Schmidt et al., 2017 Int, Jn. of Hyd. Energy, 42, 30470-30492
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λ-
0

mS m2mol−1Anionsλ+
0

mS m2mol−1Cations

19.91OH−34.96H+

7.634Cl−3.869Li+

7.84Br−5.011Na+

15.96SO4
2−10.612Mg2+

7.14NO3
−11.900Ca2+

Why acidic or basic electrolyzers
• All electrolyzers (and fuel cell cells) need to minimize ionic conductivity losses.

• H+ is the most conductive ion, and OH- is the 2nd most conductive.  

• If we try things at neutral pH, the ionic conductivity losses dominate.

Ionic conductivities (from wikipedia)

𝑉 ൌ 𝑖 ൈ 𝑅஼௢௡ௗ

• Many researchers brag about 
electrolyzer catalysts that work at 
pH=7.  Who cares?
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CEM Electrolyzer

Places for potential energy loss
• Proton transfer
• Electron transfer
• Anode
• Cathode

H+

H+

H2O

H2O

e-

Anode Cathode
Electrolyte

O2
e-

H2H+

H2

Electrical current

e-
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• This is just like fuel cells, but in reverse.

• In this field Nafion is also the best cation exchange membrane.

Proton transfer

NafionElectrolyzer Fuel Cell
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• It runs an anion exchange membrane, 
OH- as transfer medium

• Advantage of CEM to apply at large 
current, high pure and pressure 
hydrogen;

• Advantage of AEM to use the low-
cost catalysts;

• Disadvantage is durability.

Anion exchange membrane electrolyzers
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Performance vs. electrolyte 

• Anode/cathode kinetics-pH and CL ohmic changes the most by the electrolyte. 

2021 J. Electrochem. Soc. 168 054522

Very rough approximation
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Degradation in AEM electrolyzer

EnergyChem 2022, 4, 100087.16



Which of these ions can be transported through a cation exchange 
membrane
a) Na+

b) CO3
2-

c) SO4
2-

d) Fe2+

Concept Check
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• In the fuel cell maximizing the triple phase boundary was 
extremely important.

• In electrolyzers the electrolyte the aqueous solutions works 
as a quasi-proton transfer medium.

• However these devices run in pure water rather than an 
acidic environment to prevent corrosion.

• It is still important to spread out the catalysts for minimizing 
gas transport issues due to bubble formation.

Triple phase boundary

5-10 m thick
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Efficiency

Places for potential energy loss
• Proton transfer
• Electron transfer
• Anode
• Cathode

Proton On-site data 

Ionic loss

Anode Loss

• Discuss why the anode and ionic losses look the way they do.

Cathode Loss

Anode
Cathode
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Scalable catalysts

Very little of these catalysts

• As of 2020 electrolyzer’s small market share allow them to use large amount 
of noble metals.  This is probably not scalable.

• Much of the issues are engineering issues.

• However the catalysis is still a fundamental science issue.

Vesborg and Jaramillo, RSC Advances, 2013
Giner: Presented at Hannover Messe 2014, 
April 7-11

~10% of this is catalysis
(1% total as of 2014)
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Scalable catalysts

• We are starting to see the issues with Ir though as PEM electrolyzers scale up

~10% of this is catalysis
(1% total)

1% from Iridum is now 3-4%

As electricity and other capital 
cost decreases, Ir increases

2014 2024
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Anode and cathode

• We can use a similar approach as the fuel cells to understand the electrolyzer reactions. 

Anode:

Cathode:

Reaction Co-ordinate

Fr
ee

En
er

gy

Products

Reactants

Ea

Grxn

Heterogeneous Catalysis

Reaction Co-ordinate

Fr
ee

En
er

gy H2H+ + e-

H2O O2+H+ + e- Electrolyzer
Voltage (V)

G (H2/ H+ )=0

G (O2/H2 O) = 0
Erxn=1.23V

Electrochemical Catalysis

2𝐻ା  ൅ 2𝑒ି → 𝐻ଶ

𝐻ଶ𝑂 →
1
2𝑂ଶ ൅ 2𝐻ା  ൅ 2𝑒ି
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Reaction Co-ordinate
Fr

ee
En

er
gy H2H+ + e-

H2O O2+H+ + e- Electrolyzer
Voltage (V)

Erxn=1.23V

Reaction Co-ordinate

Fr
ee

En
er

gy

H2

H+ + e-

H2O

O2+H+ + e-

Electrolyzer
Voltage (V)

Erxn=1.23V

aAnode activation)

cCathode activation)
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Quantifying losses

• As you increase the voltage drop () you decrease the 
catalytic barrier.

Ea=200 mV
 =0 V

• Again, the Tafel equation is used

Generic Example

Ea=120 mV
 =100 mV

Ea=30 mV
 =300 mV

𝑖 ൌ 𝑖଴𝑒𝑥𝑝
ఎ
஺ or 𝜂 ൌ 𝐴𝐿𝑛

𝑖
𝑖଴

i is the current (mA/cm2)
i0 is the current exchange density (mA/cm2)
 is the overpotential (i.e. voltage drop) (V)
A is the Tafel slope
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Catalysis
• Both the anode and cathode follow the same electrochemistry principles as 

the fuel cell.

• The hydrogen reaction is the easiest to understand, so we will start there first.

2𝐻ା  ൅ 2𝑒ି → 𝐻ଶCathode:

• Platinum is good, but expensive.

• Can we find an alternative that is just as good, 
but much cheaper.

• Why is platinum a good catalyst?

Wrong, underestimated 25



Designing good catalysts

• Either the Tafel or the Herovsky mechanism occurs depending on H surface coverage.

• Lower surface coverage of H favors Tafel mechanism (i.e. H-H coupling)

• Pt for H2 evolution is almost the perfect catalyst, but why?

• First we need to understand the intermediates.

 2𝐻ା൅2𝑒ି → 𝐻ଶ• Overall reaction:
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Volcano plot

• Volmer-Heyrovsky mechanism:
𝐻ା ൅ 𝑒ି →∗ 𝐻 (Volmer)

∗ 𝐻 ൅ 𝐻ା ൅ 𝑒ି → 𝐻ଶ (Heyrovsky)

• If Volmer step is Rate-limiting step, a lower
energy barrier requires a stronger H adsorption

• If Heyrovsky step is Rate-limiting step, a lower
energy barrier requires a weaker H adsorption

∗ 𝐻
𝐻ା ൅ 𝑒ି

∗ 𝐻

𝐻ଶ

Sabatier’s principle: the interaction
between the reactant/intermediate 
should have a moderate binding, 
neither too strong nor too weak. 

Nørskov, J. K., et al. J. Electrochem. Soc. (2005)27



How nature resolves this issue

• The nitrogenase enzyme produces hydrogen and doesn’t use noble metals.

• Ib Chorkendorff, Jens Nørskov, and Tom Jaramillo realized that MoS2 was pretty similar.
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MoS2

• The current exchange density was about the same as Ni (100x worse than Pt), but 
was stable in acid.

• Interestingly, it was only the edges that were active.  The bulk was in-active.

Microscopy images of MoS2

Figures from Jaramillo, et al., Science, 2007
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Progression over time
• The scientific community has slowly optimized this catalysis.

• Using a ‘follow nature’ approach phosphides such as MoS2, CoP, NiP, and FeP
all have been shown to be quite effective.

• Pt is so good though, we need such a small amount, it is actually scalable to 
the TW scale.

Vesborg, et al., JPC-L, 2015

Pt

Kemppainen, et al., E&ES, 2015
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Hydrogen evolution catalysts acid vs alkaline
• Acid is better, but alkaline conditions have many cheap alternatives.

• Ionic resistance is worse in basic solutions.

https://doi-org.proxy.findit.cvt.dk/10.1021/ja510442p
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Oxygen evolution

• The oxygen evolution reaction involves more electrons so it probably will be harder.

• Since this is the opposite of the fuel cell oxygen reduction reaction, it should be quite 
similar.

Anode: 2𝐻ଶ𝑂 → 𝑂ଶ ൅ 4𝐻ା  ൅ 4𝑒ି

Proton On-site data 

Anode Loss
• If we take the same approach of looking 

at binding energies we should be able 
to minimize this loss.

Cathode Loss
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Oxygen evolution mechanism

Anode: 2𝐻ଶ𝑂 → 𝑂ଶ ൅ 4𝐻ା  ൅ 4𝑒ି

Reaction Co-ordinate

H2O O2+H+ + e-Fr
ee

En
er

gy

Erxn=1.23V

=
• We can equivalently state that when the H2O oxidation progresses, the 

electrons need to move to a higher energy.

• This equivalent approach helps is explaining this mechanism.

Reaction Co-ordinate

H2O

O2+H+ + e-

Fr
ee

En
er

gy
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Oxygen evolution mechanism

2𝐻ଶ𝑂 → 𝐻ଶ𝑂 ൅ 𝐻𝑂∗ ൅  𝐻ା ൅ 𝑒ି
        → 𝐻ଶ𝑂 ൅ 𝑂∗ ൅ 2𝐻ା ൅ 2𝑒ି

→  𝐻𝑂𝑂∗ ൅ 3𝐻ା ൅ 3𝑒ି
→  𝑂ଶ ൅ 4𝐻ା  ൅ 4𝑒ି

• The most commonly proposed mechanism is shown below:

Exact opposite of ORR for fuel cells

*- Catalyst site

Reaction Co-ordinate

H2O

O2+H+ + e-

Fr
ee

En
er

gy

Rossmeisl, 2007, JEAC

This barrier needs to be 
reduced to zero for all 4 e-
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Oxygen evolution mechanism
• The rate limiting step is catalyst dependent.

• It is not directly the binding of the HO*, O*, 
or HOO*.

2𝐻ଶ𝑂 → 𝐻ଶ𝑂 ൅ 𝐻𝑂∗ ൅  𝐻ା ൅ 𝑒ି
        → 𝐻ଶ𝑂 ൅ 𝑂∗ ൅ 2𝐻ା ൅ 2𝑒ି

→  𝐻𝑂𝑂∗ ൅ 3𝐻ା ൅ 3𝑒ି
→  𝑂ଶ ൅ 4𝐻ା  ൅ 4𝑒ି

 a
no

de
(V

) @
 1

 m
A/

cm
2

Bockris et al., JES, 1984 Seh et al., Science, 355, 146 2017

Mechanism

120 kcal/mol 
=1.23 eV

Theoretically 3*1.2 = 3.6 eV
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Oxygen evolution mechanism
• Why can’t our volcano plot reach 0 V overpotential?

Catalyst
O

H

O O
0H

H2O
O2

Man et al., ChemCat Chem, 2011

• All 3 intermediates have O bonded to the surface.

• We have 2 G’s we want to optimize, and only 1 
parameter (bonding strength)

• The result is optimizing one G, deoptimizes the other.

• This is known as a scaling relationship.

G=1.23 eV G=1.23 eV
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Oxygen evolution mechanism
• The scaling relationship forces the 2 electron process of  HO*→O*→ HOO* to have a 

minimum G=~3.2 eV, (1.6 eV/electron.)

• Thus we are forced to have ~400 mV of loss due to this process.  In reality high surface 
area lets us minimize this to ~300 mV.

• This scaling relationship applies to the fuel cell ORR reaction as well.

300 mV

Garcia-Moto et al., ChemCatChem, 2011

 a
no

de
(V

)

Stephens et al., EES, 2012

Fuel cell Electrolyzer1.23V - 300 mV=
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Effect of scaling relationship
• The scaling relationship is the cause of the majority of losses in both fuel cells 

and electrolyzers.

• If it we didn’t have the scaling relationship issue, the losses on the oxygen side 
could be realistically as low as the losses on the hydrogen side.

Proton On-site data 

Ionic loss

Anode Loss

Bernardi and Verbrugge, JES, 1992 38



Efficiency Math

• How efficient is the hydrogen economy?

Electrolyzer Fuel Cell

H2

Storage

H2 e-

Car 
(or other device)

H2O → H2 +O2
H2 +O2 → H2O

e-

Efficiency
(using 1.23V as 100%)

57%    X  90%Current Status

Without
scaling issues

~ 90%

(Assumption)

66% XX = 30%

88% X ~ 90% X = 58%

Gasoline /  
normal engine

Oil → gasoline

88% X X~ 100% 40% = 39%

Diesel engine

Electric motor

81%    X  90%

Battery 92% X X~ 100% 92% x 90% = 76%
Charging Discharging
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Breaking the scaling relationship

• Can we break the scaling relationship? It would probably give you a Nobel prize.

2010 2030
Scaling relations bottlenecking 

H2 economy

Discuss your ideas

Scaling relations bottlenecking 
H2 economy
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Electrolyzer Thermodynamics

• Electrolyzers are the opposites of fuel cells in many  ways

Δ𝐺
∆𝐻

Δ𝐻
∆𝐺

𝐻ଶ ൅
1
2𝑂ଶ → 𝐻ଶ𝑂

CEM Fuel cells

Overall reaction:

CEM Electrolyzers

𝐻ଶ𝑂 → 𝐻ଶ ൅
1
2𝑂ଶ

Anode:

Cathode:

Max Efficiency (𝜂):

𝐻ଶ →  2𝐻ା ൅ 2𝑒ି

2𝑒ି ൅ 2𝐻ା ൅
1
2𝑂ଶ → 𝐻ଶ𝑂

Operational Voltage:

2𝐻ା ൅ 2𝑒ି → 𝐻ଶ

Vop < 1.23 V Vop > 1.47 V 

𝐻ଶ𝑂 → 2𝑒ି ൅ 2𝐻ା ൅
1
2𝑂ଶ
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Thermodynamic efficiency

• Can we get over 100% thermodynamic efficiency in our electrolyzer?

𝜂ா௟௘௖௧௥௢௟௬௭௘௥ ൌ
Δ𝐻
∆𝐺

• Gf=-237 KJ/mol, 

• Hf=-286 KJ/mol (HHV)

𝜂ி௨௘௟ ஼௘௟௟ ൌ
Δ𝐺
∆𝐻 ൌ

1.23 𝑉
1.47 𝑉 ൌ 83%
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Yes!

• Can we get over 100% thermodynamic efficiency in our electrolyzer?

• You need to think of the entire system.
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Thermodynamic efficiency

• The key is the entropy.

• If the electrolyzer is over 100% efficient, the entropic term will cool the reaction.

𝜂ா௟௘௖௧௥௢௟௬௭௘௥ ൌ
Δ𝐻
∆𝐺 ൌ

Δ𝐻
Δ𝐻 െ 𝑇Δ𝑆 ൌ

1.48 𝑉
1.23 𝑉 ൌ 119%

• In the case of >100% efficiency, heat would needed to be added to the cell to maintain 
the temperature.

• Thus the added heat would need to compensate from the entropic advantage the 
electrolyzer gets.

• In H2 fuel cell/electrolyzer almost all the entropy is related to heat of vaporization of 
water. 44



Thermodynamic efficiency

• The 1.48 V is sometimes referred to as the thermo-neutral water splitting 
potential.

O V

1.23 V

1.48 V
1.5 V

1.9 V
The best alkaline and CEM 
electrolyzers operate in this
range.

• Why go to higher voltages since it 
decreases efficiencies?

Heat needs to be
added in this range.

Thermodynamic
neccessary
Voltage.

At 25 C

• Any device inefficiency (e.g. overpotential) 
will give us heat.
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• Below are i-V curves of the best PEM electrolyzers.

• At low currents, it is possible to be below the thermoneutral voltage.

• Higher currents help out in minimizing capital costs.  

Efficiency

Thermo neutral voltage

Data from Giner including ohmic lossesBernt, et al., J.Elec. Soc., 163 (11) F3179-F3189 (2016)

Thermo neutral voltage
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Thermodynamic efficiency

• The 1.48 V is sometimes referred to as the thermo-neutral water splitting 
potential.

O V

1.23 V

1.48 V
1.5 V

1.9 V
The best alkaline and CEM 
electrolyzers operate in this
range.

• Why go to higher voltages since it 
decreases efficiencies?

Heat needs to be
added in this range.

Thermodynamic
neccessary
Voltage.

At 25 C

𝐸 ൌ
Δ𝐺
𝑛𝐹𝐸 ൌ

Δ𝐻 െ 𝑇Δ𝑆
𝑛𝐹𝐸

• 1.48 V is the potential at T = 0K

• Any device inefficiency (e.g. overpotential) 
will give us heat.
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Solid oxide fuel cell/electrolyzer efficiency

𝜂ி௨௘௟ ஼௘௟௟ ൌ
Δ𝐺
∆𝐻 ൌ

Δ𝐻 െ 𝑇Δ𝑆
Δ𝐻

• High temps are bad for electrical production (i.e. Solid oxide fuel cells)

Solid oxide fuel cells 
operate at this temp

𝜂ா௟௘௖௧௥௢௟௬௭௘௥ ൌ
Δ𝐻
∆𝐺 ൌ

Δ𝐻
Δ𝐻 െ 𝑇Δ𝑆

• High temps are great for chemical production

• Endothermic process

• Thus needs heat in 
addition to electricity
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If I am operating a fuel cell at its thermodynamic limit I will 
a) Consume heat, but less than an electrolyzer

b) Consume heat, but more than an electrolyzer

c) Give off heat with the heat increasing as I go to higher temperatures

d) Give off heat with the heat decreasing as I go to higher temperatures

Concept Check
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• From thermodyanmics higher temperature means greater efficiency (>100 %) for 
electrolytic processes. This assumes heat is for free.

• High temperature means faster catalysis, and lower overpotential

Solid oxide water electrolysis?

• Catalytic losses can not provide enough
heat, so heat must be added

• By adding heat to make it thermo-
neutral this decreases our efficiency to 
100%.
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• O2
- are unstable in water or air, but can occur in 

ceramics.

• To conduct current through ceramics, devices must 
operate at ultra high temperatures (600-800 °C)

• Disadvantages- high temp = high capital cost & low
durability

• Advantages: Thermodynamics & minimal catalytst
overpotential.  No water/humidity mixed with gases

Solid oxide water electrolysis

O2-

O2-

e-

Anode
Cathode

‘Membrane’

O2
e-

O2-

H2

Electrical current

e-

H2O
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Who is doing this?

• Haldor Topsoe, who are located 1km from DTU

• Originally focused on solid oxide fuel cells

• Starting  tommorow they will produce 500 MW/yr of 
electrolyzers (Official opening of plant is 30-11-2025)

• Sunfire is a German start-up (from 2010) that employs 250 people

• Focus on H2, CO, and syngas production

• Highly developed, maybe a little behind
Topsoe in commercialization

• Parterning with a lot of other companies
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Competing Technologies
Advantages Disadvantages

Schmidt et al., 2017 Int, Jn. of Hyd. Energy, 42, 30470-30492
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Learning Objectives

• From this lecture you should be able to understand:
- The fundamental physics behind electrolyzers.

- How to improve the efficiency/costs of electrolyzers.
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Exercises

• If you are operating at 1 A/cm2, what is the volumetric  production rate of H2 at 25C and 
1bar pressure. Give the results in ml/cm2 area.

• If we have 100 GW electrolyzers that operate 80% of the time at an energy efficiency of 
90%, how much H2 can be produced in 1 year.  If most the world’s energy consumption
(11.8 TW) is from electricity produced by a fuel cell (operated at 0.8V), how long can the 
world run solely on our annual H2 production.
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