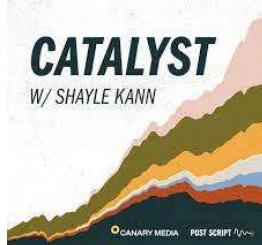



Renewable Energy Podcasts

Stephen Lacey

Irish / French


English

Shayle Kann

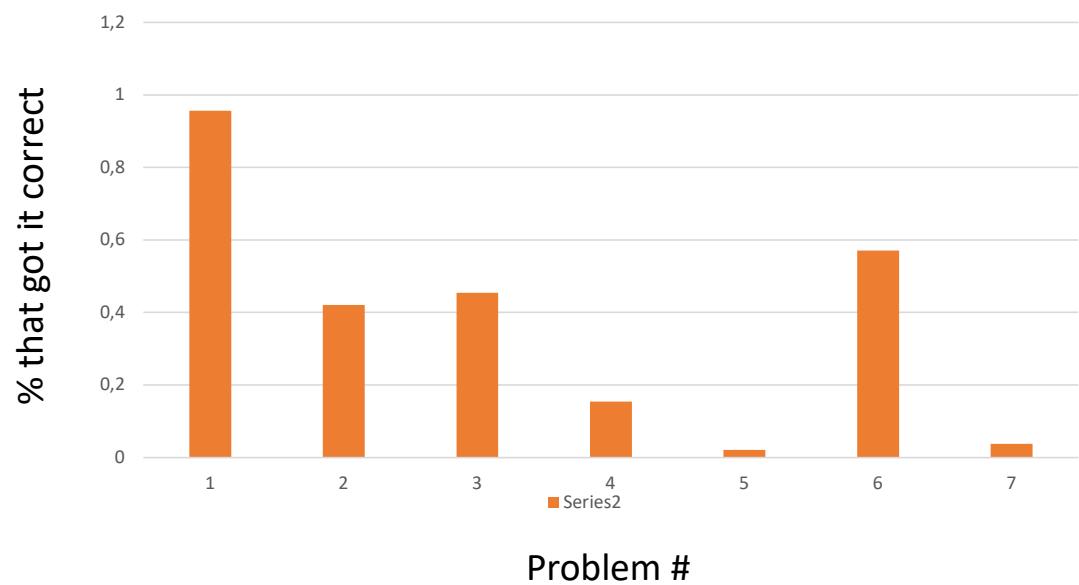
Energyinsiders()
a RenewEconomy podcast

Australians

Question # 1

- Difficulties
- Physical feasibility
- Science behind-2
- The underlying physics behind engineering designs
- Compare fundamental science between different approaches
- Viability of sustainable projects
- Detailed equations behind sustainable energy
- Development of solutions

Question #3


Lecture	Reading	Exercises
8,13	6,74	8,70
1,26	1,70	1,33

2

Question #

Storage-5
 New startups
 Conversion-2
 Nuclear-5
 Batteries-1
 Wind Power - 7
 Electrochemistry-2
 H2 Storage
 Electrolysis-2
 CO2 capture-4
 Power2X-
 Photosynthesis
 Solar-9

‘Pre-test’

Photovoltaics

Lecture - Learning Objectives

At the end of this lecture you should:

- Understand the detailed balance for solar cells, and why maximum efficiency for a single photoabsorber is 33%
- Be able to analyze the basic principles of photovoltage and factors that can effect it
- Understand how p-n junctions work and their relation to solar cells.

How much energy can we get ?

- Comparison of renewable energy sources:
 - Geothermal: 0.3-2 TW
 - Hydro Power: 3-4 TW
 - Biomass: 2-6 TW
 - Wind Power: 25-70 TW
 - Solar Power: 123,000 TW
- Solar will always provide us with enough energy to power the planet.
- *The real question is can we do it cheap enough to be economically viable.*

Extremely Wrong

Secretary Chris Wright @SecretaryWright · 5h

Even if you wrapped the entire planet in a solar panel, you would only be producing 20% of global energy.

One of the biggest mistakes politicians can make is equating the ELECTRICITY with ENERGY!

Readers added context

Earth gets ~1.5M TWh/day of solar energy—over 3,000x global energy use (~165K TWh/year). Covering just 1% of land with panels could—theoretically—power the planet. Electricity is energy, and electrification replaces fossil use in transport, heat, and industry.

8:28 PM · Sep 2, 2025

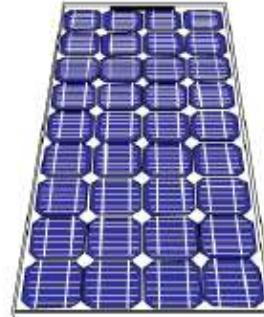
1.1K Reply Copy link

Read 69 replies

Ambitious PV system goals

Ambition: Cost effective grid power from PV

2012

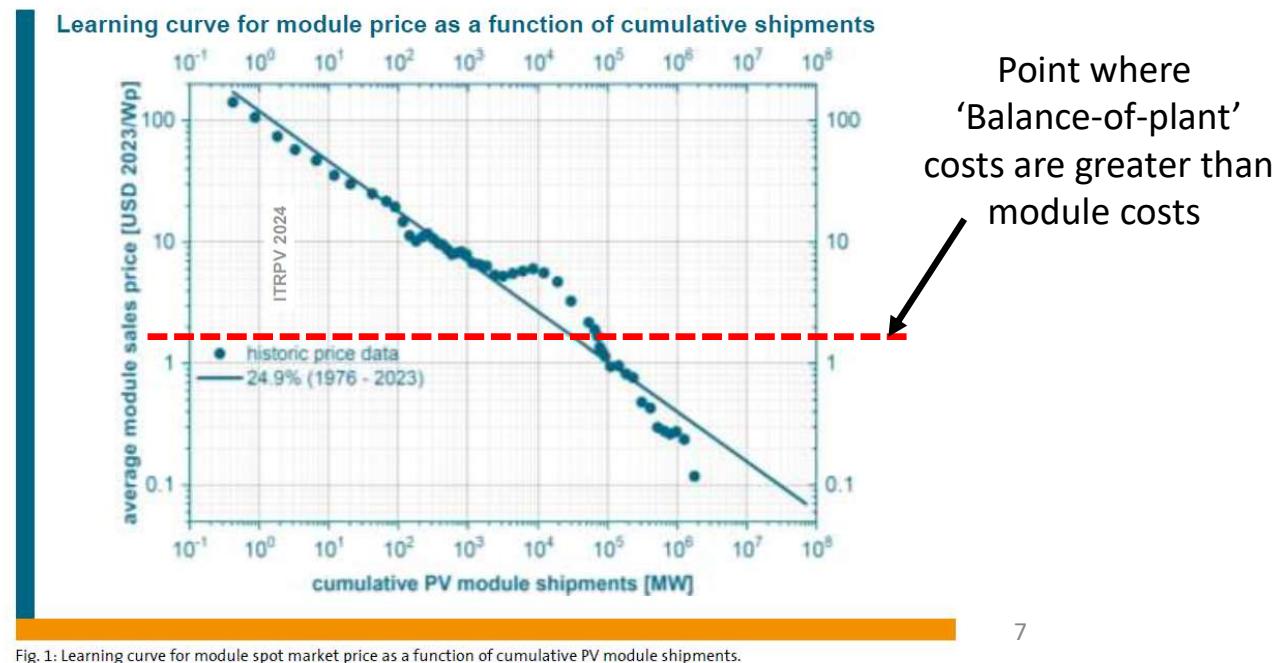

July 2024

Requirements:

Utility system costs: $C_s \sim 1 \text{ \$/W}$	Currently $\sim 3.5 \text{ \$/W}$	1.00 \\$/W
Reliability: $\sim 30 \text{ yrs}$		
Efficiency: $\eta \geq 25\% (!)$	Electricity cost: $\propto C_s/\eta$	
Materials: Earth abundant, preferably non-toxic, recyclable		
Module cost: $\sim 0.5 \text{ \$/W}$	Currently $\sim 1.7 \text{ \$/W}$	0.085 \\$/W
Cell cost: $\sim 0.25 \text{ \$/W}$	Currently $\sim 1 \text{ \$/W}$	0.032 \\$/W
+ affordable energy storage		

PV cell

PV module

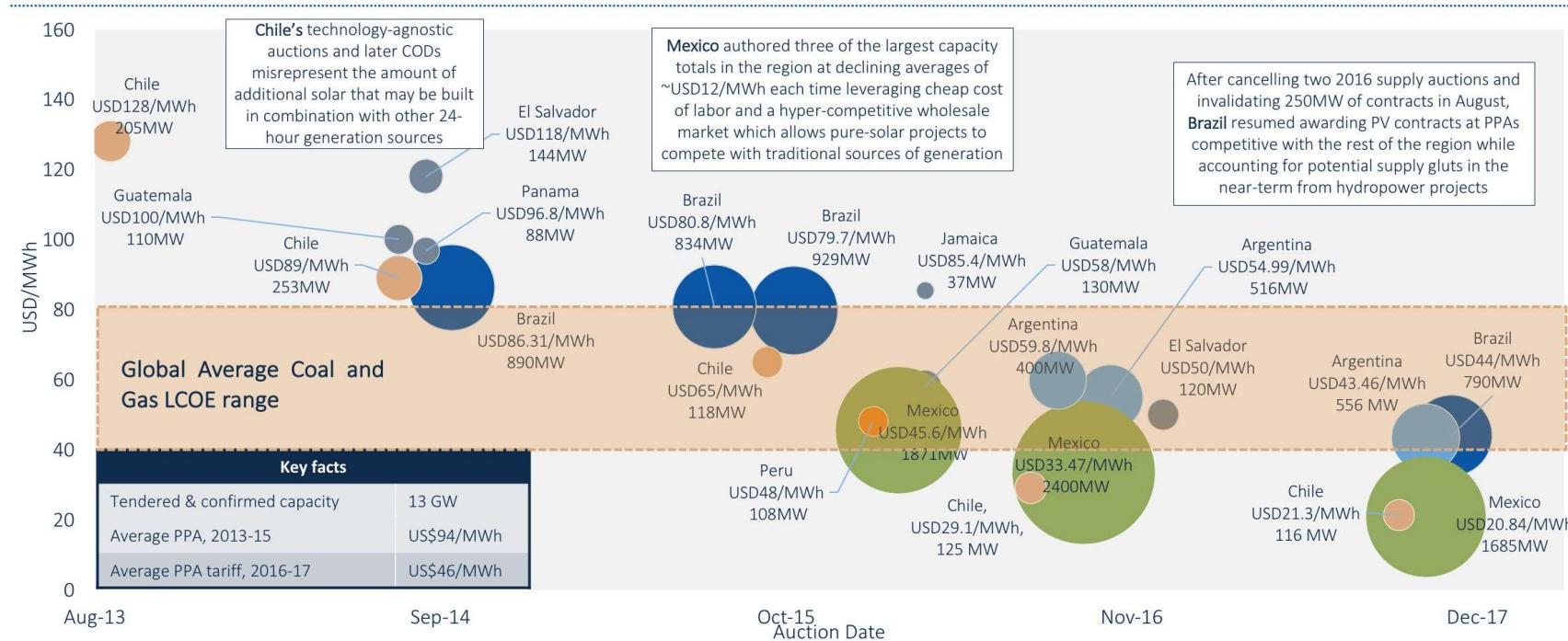


PV system (Nellis Air Base, US)

*Data from
PVinsights.com &
SEIA.org*

Solar Cell Costs

- Record solar price: 2020: 10.4 \$/MWh (Saudia Arabia)
2022: -4.5 \$/MWh (Portugal)- Deal also includes storage.
- Avg. residential electricity cost in EU: 250 \$/MWh
- The top ~10 biggest companies for Si solar cells all are from China.

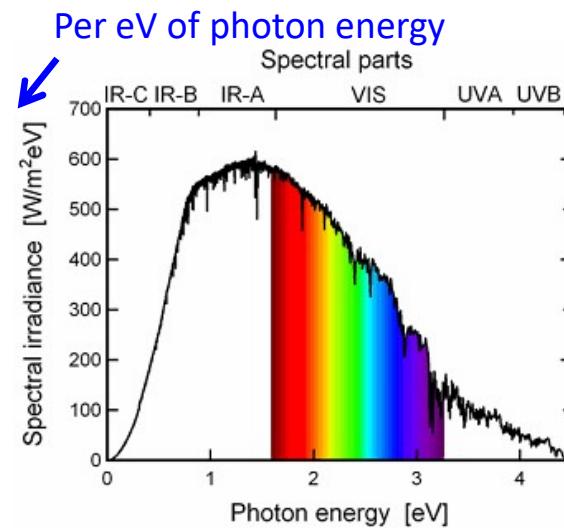
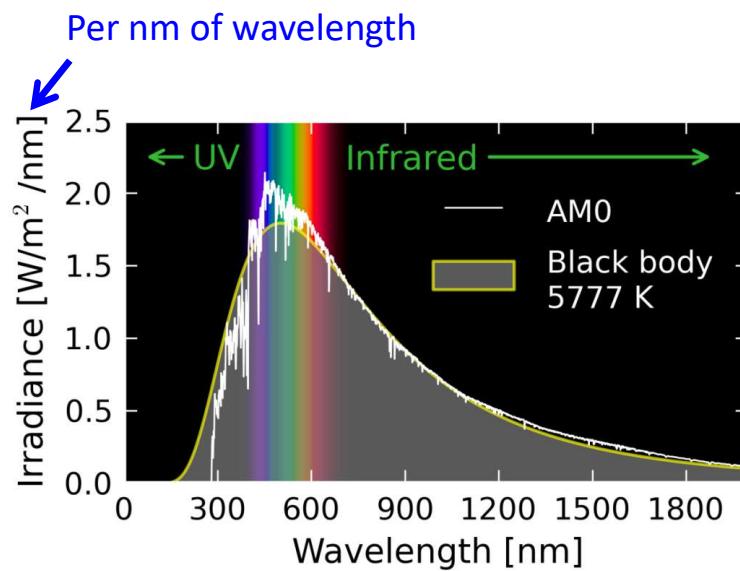


Reference: ITRPV Report 15th Edition

Reverse Auction

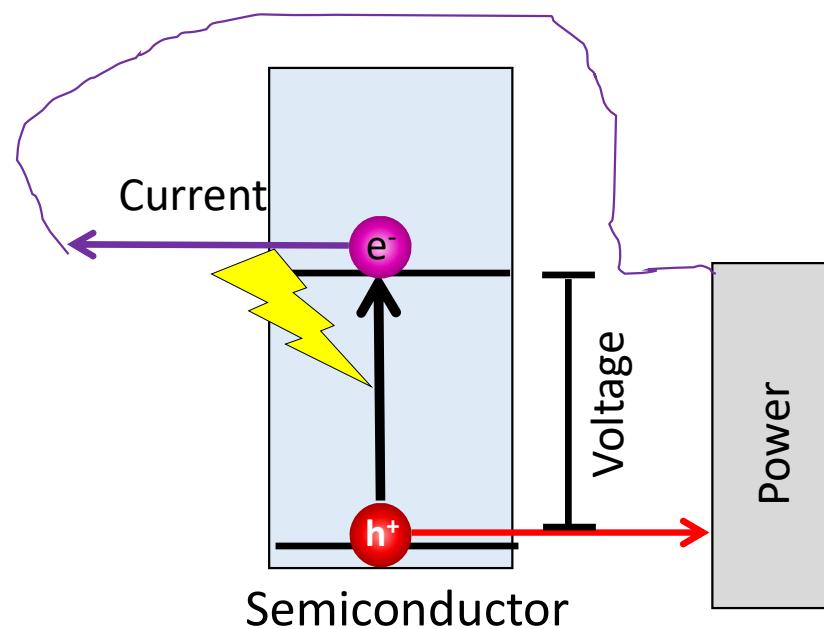
- Countries say they want a given amount of renewable electricity (with conditions) and then the lowest bid gets the job.
- This has been an absolute success. Prices have dropped incredibly due to this.

Latin America & Caribbean Tendered Projects by Bid Price and Capacity, 2013-2017

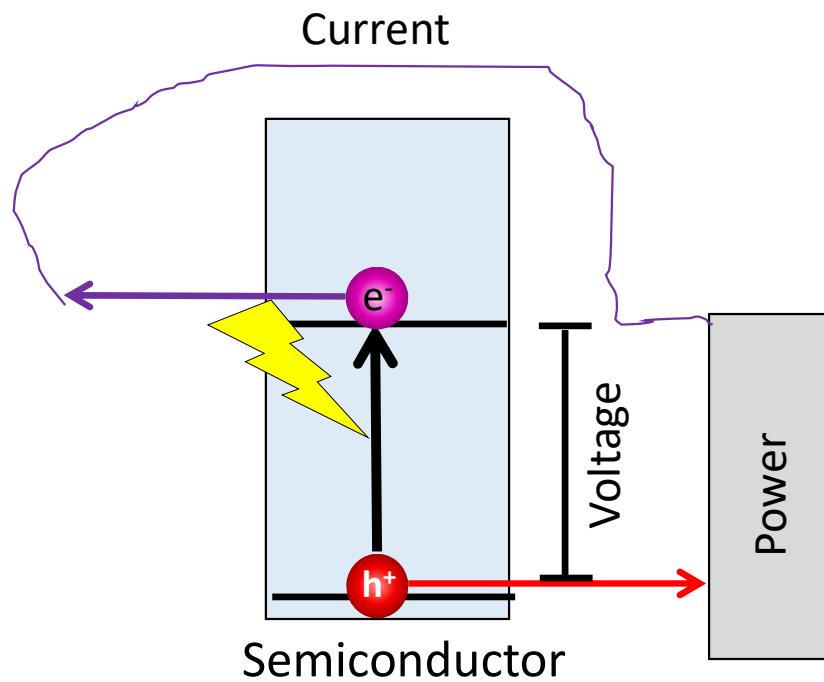



Source: GTM Research Global Solar Demand Monitor Q4 2017

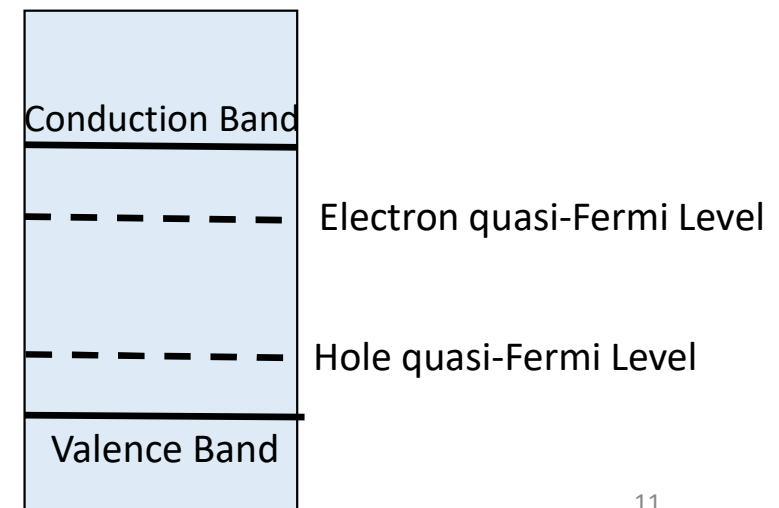
Incoming light – quick review


- While typically the plots are irradiance vs. wavelength, irradiance vs. photon energy can also be useful.
- We can convert these graphs using the following equation:

$$E(eV) = \frac{1240}{\lambda(\text{nm})}$$


Solar cells – quick review

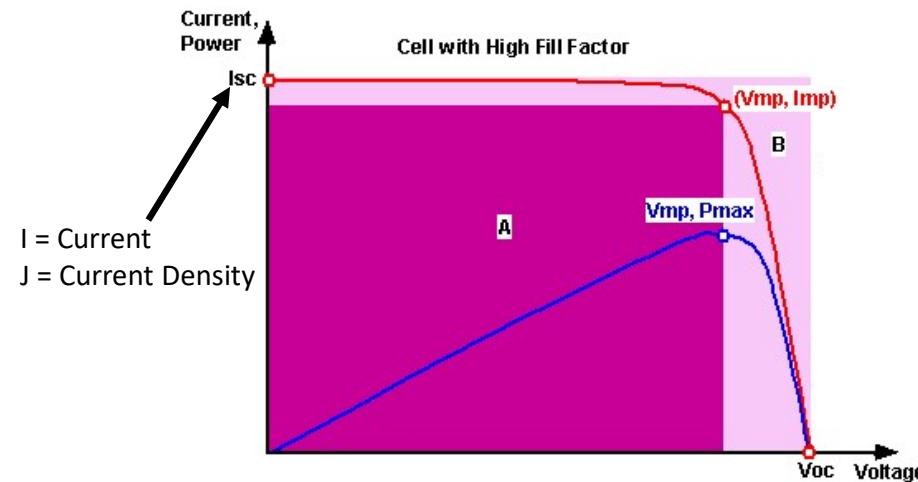
- From a first order theory we should be able to get power according to the voltage and current



Solar cells – more detailed description

- From a first order theory we should be able to get power according to the voltage and current

- From a more in-depth approach it is actually the splitting of our Fermi level that gives us photovoltage.


Relating voltage to current

- We want power (or power density) from our solar cell and this is simply:

$$P = V \times j$$

where V is voltage and j is current density.

- Increasing our current decreases our voltage, leading to a j-V curve as shown below

$$FF = \frac{J_{mp}V_{mp}}{J_{sc}V_{oc}}$$

$$Power_{Max} = FF \times J_{sc}V_{oc}$$

V_{oc} = Open circuit voltage
 V_{mp} = Max power voltage
 J_{sc} = Short circuit current
 J_{mp} = Max power current

Variables

h = Planck's constant = 4.1×10^{-15} eV* s

c = speed of light = 3.0×10^8 m/s

k_B = Boltzmann's constant = 1.38×10^{-23} m² kg s⁻² K⁻¹

$q = e$ = elementary charge = 1.6×10^{-19} C

B = Intensity- in W/m²

λ = wavelength- in nm (can also be in m)

E = Energy- in eV (can also be in J)

I = Current (mA)

J = Current density (mA/cm²)

J_0 = Dark saturation current density (mA/cm²)

J_{sc} = Short-circuit current density (mA/cm²)

μ = efficiency (in %)

$\Delta\mu$ = Chemical potential

F_s = Solid angle of emission from the Sun to Earth = 6×10^{-5}

F_e = Solid angle emission of Earth

F_a = Solid angle of emission from solar cell (normally Pi, but can vary)

Ideal Diode Equation

- Lets integrate the entire J_{net} equation over all energies:

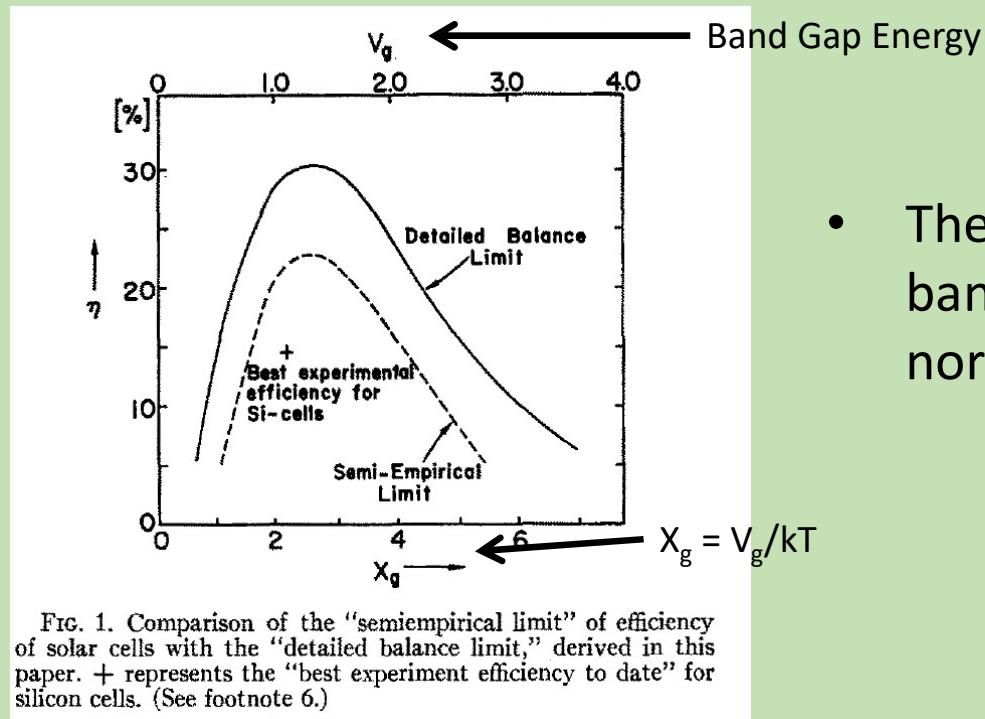
$$J_{net} = q \int_{E_g}^{\infty} (1 - R(E)) \times (b_{sun}(E) + b_{amb}(E) - b_{emit}(E, \Delta\mu))$$

$$J_{net} = J_{sc} - J_0 \left[\exp\left(\frac{qV}{kT}\right) - 1 \right]$$

where J_0 is defined as:

Important point of J_0

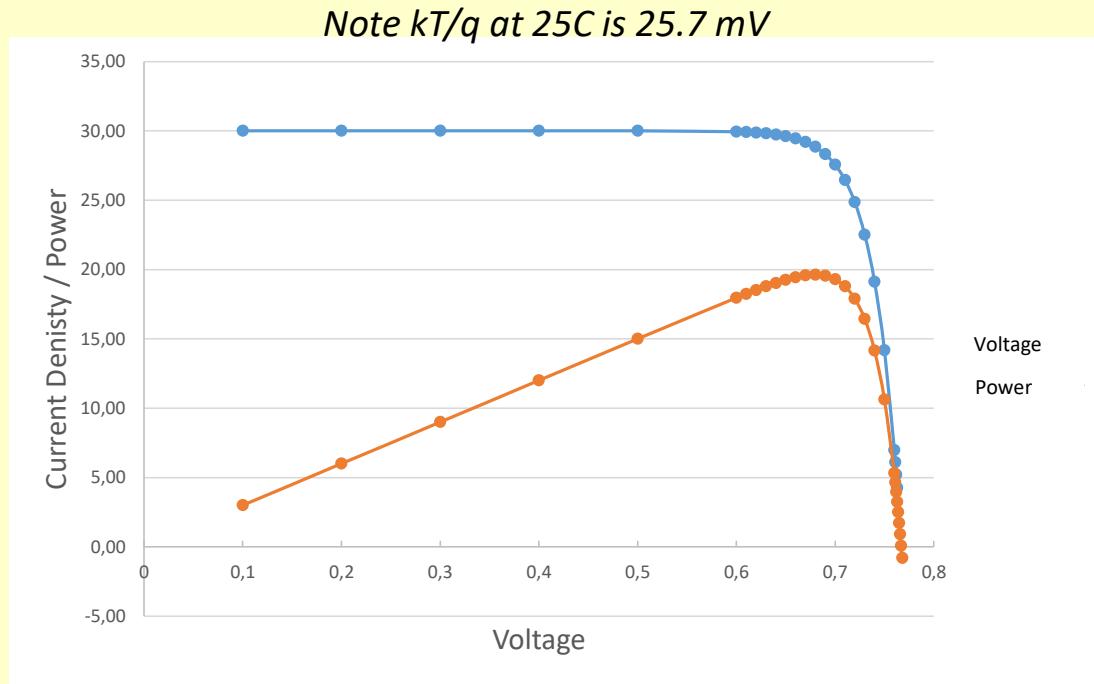
This is a function of temperature


$$J_0 = \frac{1}{\eta} q F_a \frac{4kT}{h^3 c^2} \times (E_g^2 + 2kTE_g + (kT)^2) \times \exp\left(\frac{-E_g}{kT}\right)$$

Emission angle (π if you have a perfect back reflector)

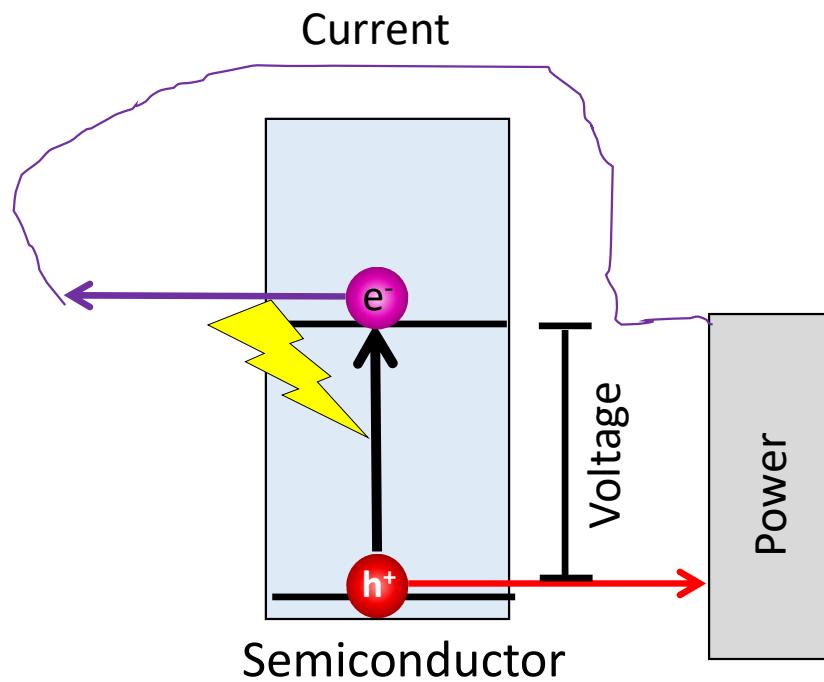
Collection efficiency (includes reflection)

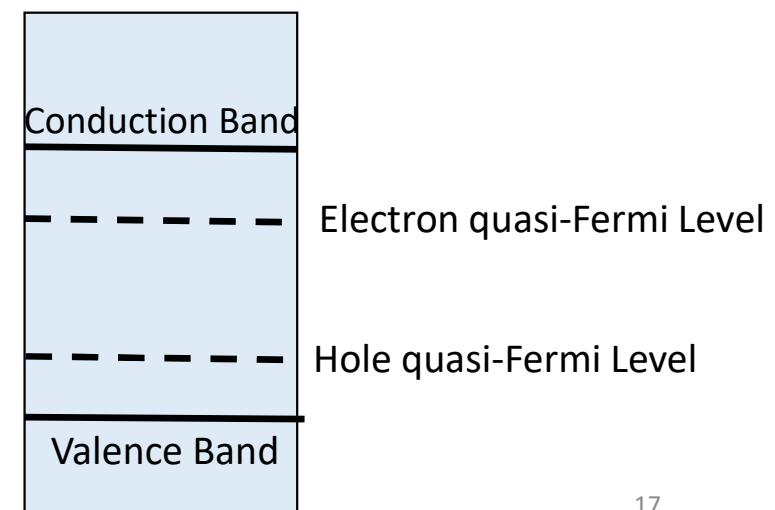
Maximum efficiency- Shockley-Queisser


- If we actually integrate the current over all energies/wavelengths and assume 100% absorption and 0% reflection, we get the Shockley-Quieser limit.

- The maximum efficiency for a single band-gap photoabsorber under normal sunlight is **33%**

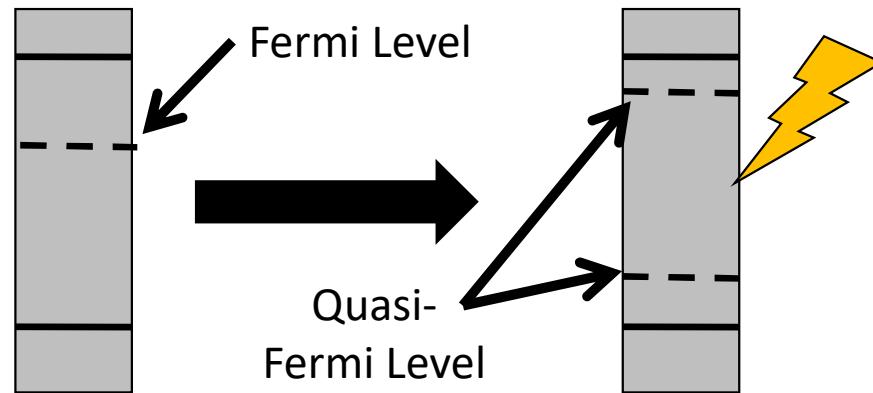
Applying diode equation


- If I have a solar cell with a dark saturation current (J_0) of $1 \times 10^{-11} \text{ mA/cm}^2$ and a short circuit current (J_{Sc}) of 30 mA/cm^2 , what is my maximum power at a temperature of 25°C ? or more simply, what is the power density at 0.5V ?


Answer = at 0.68V power is 19.6 mW/cm^2

Solar cells – more detailed description

- From a first order theory we should be able to get power according to the voltage and current



- From a more in-depth approach it is actually the splitting of our Fermi level that gives us photovoltage.

Physics of a Photovoltage

- During irradiation we add electron-hole pairs (add n and p)
- This provides a splitting of the Fermi level

Conduction Band: $E_{f,e-} = E_c + k_b T \ln \left(\frac{n}{N_c} \right)$

$$N_c = 2 \left(\frac{m_c^* k_B T}{2\pi\hbar^2} \right)^{3/2}$$

m_c - effective mass of electrons

Valence Band: $E_{f,h+} = E_v - k_b T \ln \left(\frac{p}{N_v} \right)$

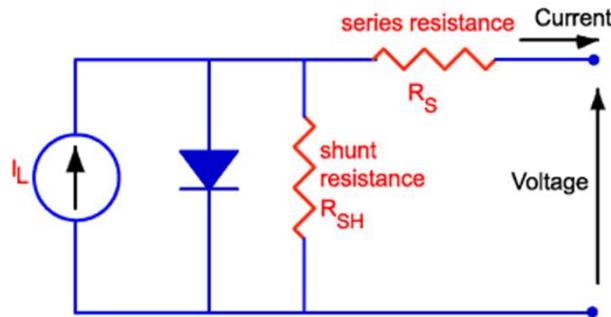
$$N_v = 2 \left(\frac{m_v^* k_B T}{2\pi\hbar^2} \right)^{3/2}$$

m_v - effective mass of holes

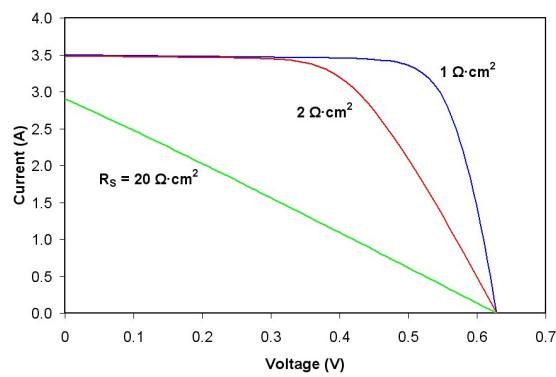
Photovoltage: $qV_{Phot} = E_{f,e-} - E_{f,h+}$

Analysis of Photovoltage

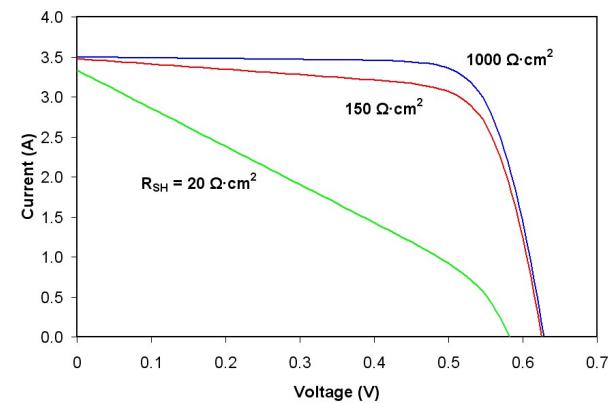
- The photovoltage is sometimes denoted as a difference in chemical potential ($\Delta\mu$)
- By rearranging the photovoltage equation we get the following


$$qV_{Photo} = \Delta\mu = E_g + k_b T \ln \left(\frac{pn}{N_v N_c} \right)$$

This is a negative term
since $\ln < 1$ is negative


- N_v and N_c relate to band gap (intrinsic property) and effective mass (material specific).

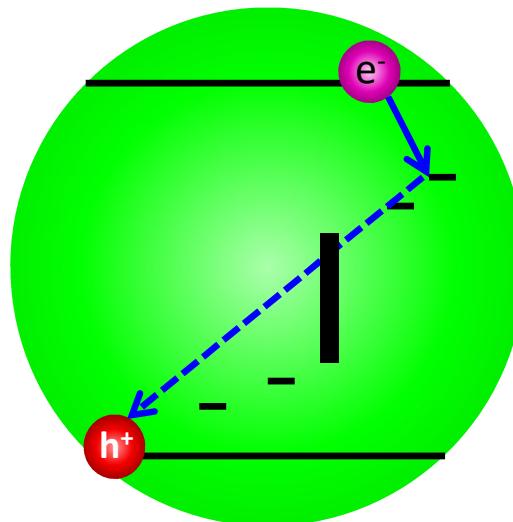
Practical Losses -Shunt & Series Losses


- The circuit for a shunt and series loss solar cell looks as followed:

Effects of Series Losses i.e. ohmic losses

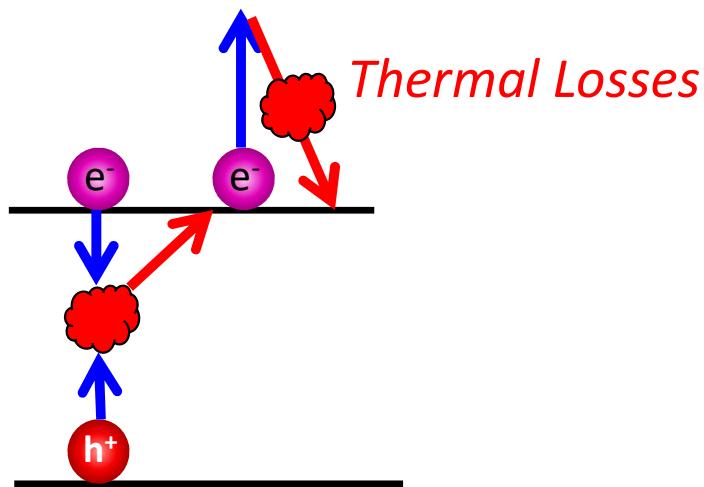
Effects of Shunt Losses-i.e. short circuit

Diode Equation + Practical Losses


$$J_{net} = J_{sc} - J_0 \left[\exp \left(\frac{qV}{kT} \right) - 1 \right]$$

- **Series Resistance (R_s)** are losses due to any ohmic resistance in the system. We want low series resistance
 - This can be external (resistance in wire to solar cell) or internal (resistance within the semiconductor)
- **Shunt Resistance (R_{SH})** are losses due to internal short circuiting of the cell. Thus we want high shunt resistance
- Including shunt and series into our diode equation we get:

$$J_{net} = J_{sc} - J_0 \left[\exp \left(\frac{q(V + J_{net}R_s)}{kT} \right) - 1 \right] + \frac{q(V + J_{net}R_s)}{R_{SH}}$$


Non-radiative Recombination - Qualitative

- If we have defect sites in our solar cell, electrons and holes will recombine at these sites giving off heat.
- More precisely, the electron-hole recombination will emit photons, but just at too small of wavelengths to be readsorbed by the semiconductor.
- This is also known as Shockley-Reed-Hall (SRH) recombination.

Auger Recombination (also non-radiative)

- If an electron and hole recombine, they can transfer their energy to a 2nd electron in the conduction band
- This 2nd electron goes up and energy, and then comes back down.

- When the 2nd electron comes back down, its energy is lost as non-radiative recombination.
- For this to take place, there needs to be a lot of electrons in the conduction band.

Recombination Losses in General

- *Shockley-Hall-Reed recombination (SRH)*- is always a bad thing thus this must be avoided.
 - High purity materials and good engineering can almost completely eliminate these losses
- *Radiative recombination (RR)*- This is black-body emissions that occur when deriving the Schockly-Queisser Equation
 - Note these radiated photons can get readsorbed by the solar cell.
- *Auger recombination (AR)*- This is a minor loss
 - AR only occurs if there are lots of electron-hole pairs.

An analysis of efficiency

- Let's look at our diode equation and see where the losses are from a fundamental standpoint.

$$J_{net} = J_{sc} - J_0 \left[\exp \left(\frac{qV}{mkT} \right) - 1 \right]$$

m = non-ideality factor (defects, etc.)
 $m = 1$ for ideal case

$$V = \frac{mkT}{q} \ln \left(\frac{j_{sc} - j_{net}}{j_0} + 1 \right) \longrightarrow V_{OC} = \frac{mkT}{q} \ln \left(\frac{j_{sc}}{j_0} + 1 \right)$$

Does increasing the temperature increase the open circuit voltage?

Finding all the efficiency losses

- By isolating V_{OC} , we can expand the J_0 term, simplify and more easily analyze our losses.

$$V_{OC} = \frac{kT}{q} \ln \left(\frac{j_{sc}}{j_0} + 1 \right)$$

$$V_{OC,Max} \approx \frac{E_G}{q} \left(1 - \frac{T}{T_S} \right) + \frac{kT}{q} \ln \left(\frac{T_S}{T} \right) - \frac{kT}{q} \left(\ln \left(\frac{\Omega_{Device}}{\Omega_{Sun} * \tau} \right) + \ln \left(4n_r^2 \right) + \ln \left(\frac{R_{rad} + R_{non}}{R_{rad}} \right) \right)$$

Entropy Terms

↑

↑

↑

Angle of emission vs. absorption Reflection losses Effectively combination of 'm' and 'η'

- The above equation lets us analyze where are our losses coming from

Finding all the efficiency losses

- Putting all the loss and gain terms together and simplifying yields:

$$V_{OC,Max} = \frac{E_g}{q} \left(1 - \frac{T}{T_s} \right) + \frac{kT}{q} \ln \left(\frac{T_s}{T} \right) - \frac{kT}{q} \left(\ln \left(\frac{\Omega_{Device}}{\Omega_{Sun} * \tau} \right) + \ln \left(4n_r^2 \right) + \ln \left(\frac{R_{rad} + R_{non}}{R_{rad}} \right) \right)$$

- Determine how much loss each term contributes.
- Determine the maximum efficiency for the following materials:
 - Si ($E_g = 1.1$ eV, average $n_r = 3.4$)
 - GaAs ($E_g = 1.4$ eV, average $n_r = 3.3$)
 - $\text{PbCH}_3\text{NH}_3\text{I}_3$ Perovskite ($E_g = 1.5$ eV, average $n_r = 2.5$)

-Assume $\Omega_{Device} = \pi$, no non-radiative recombination, and a no light concentration (i.e $\tau = 1$) . $\Omega_{Sun} = 6 \times 10^{-5}$

Finding all the efficiency losses

- Putting all the loss and gain terms together and simplifying yields:

$$V_{OC,Max} = \frac{E_G}{q} \left(1 - \frac{T}{T_S} \right) + \frac{kT}{q} \ln \left(\frac{T_S}{T} \right) - \frac{kT}{q} \left(\ln \left(\frac{\Omega_{Device}}{\Omega_{Sun} * \tau} \right) + \ln \left(4n_r^2 \right) + \ln \left(\frac{R_{rad} + R_{non}}{R_{rad}} \right) \right)$$

Entropy Terms

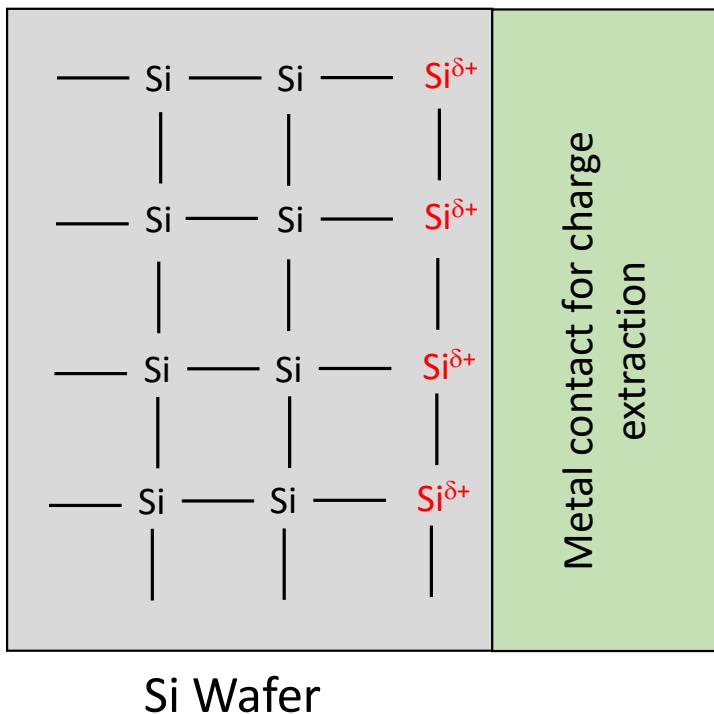
- If all terms are highly optimized the $V_{OC, Max}$ is typically about 300 mV less than the band gap (i.e. E_G)
- In theory the entropy terms can be engineered to almost zero, but this may create an impractical design from a manufacturing or economic perspective.

Best Experimental $V_{OC, max}$		
Material	E_G	$V_{OC, max}$
Si	1.1	0.740
GaAs	1.4	1.12
$PbCH_3NH_3I_3$ (Perovskite)	1.55	~1.2

Removing non-radiative recombination

- Understanding all the terms.

$$V_{OC,Max} = \frac{E_G}{e} \left(1 - \frac{T}{T_S} \right) + \frac{kT}{e} \ln \left(\frac{T_S}{T} \right) - \frac{kT}{e} \left(\ln \left(\frac{\Omega_{Device}}{\Omega_{Sun} * \tau} \right) + \ln \left(4n_r^{-2} \right) + \ln \left(\frac{R_{rad} + R_{non}}{R_{rad}} \right) \right)$$



How can we
effectively limit this
term?

- Have a more pure, and well ordered semiconductor (don't have junk in your silicon)

Other non-radiative recombination sites

- Surface defects are the other major area for non-radiative recombination.
- These results from incomplete bonds between surfaces.

- This is probably the biggest fixable loss in solar cells.
- The best way to mitigate these is to create an insulating layer at the surface.
- There is a lot of technology in trying to resolve this issue.

Finding all the efficiency losses

$$V_{OC,Max} = \frac{E_G}{q} \left(1 - \frac{T}{T_S} \right) + \frac{kT}{q} \ln \left(\frac{T_S}{T} \right) - \frac{kT}{q} \left(\ln \left(\frac{\Omega_{Device}}{\Omega_{Sun} * \tau} \right) + \ln \left(4n_r^2 \right) + \ln \left(\frac{R_{rad} + R_{non}}{R_{rad}} \right) \right)$$

Entropy Terms

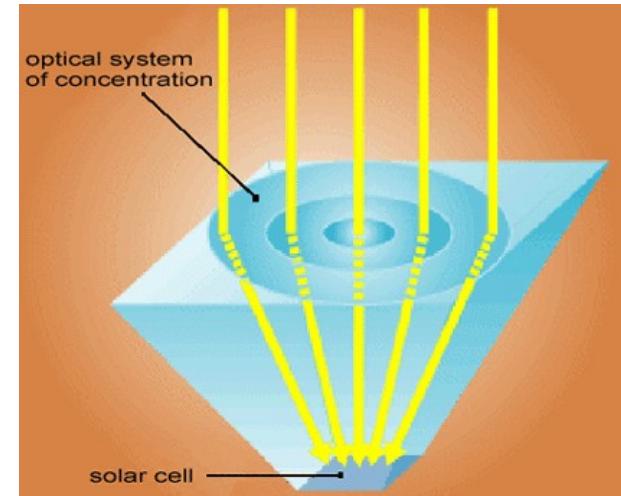
- Is there any tricks to mitigate the first two entropy loss terms.
- Obviously we can't beat the 1st law of thermodynamics, but we can manipulate entropy to our advantage.

Trying to 'Beat the system'

- Understanding all the terms.

$$V_{OC,Max} = \frac{E_G}{e} \left(1 - \frac{T}{T_S} \right) + \frac{kT}{e} \ln \left(\frac{T_S}{T} \right) - \frac{kT}{e} \left(\textcolor{red}{\ln \left(\frac{\Omega_{Device}}{\Omega_{Sun} * \tau} \right)} + \ln \left(4n_r^2 \right) + \ln \left(\frac{R_{rad} + R_{non}}{R_{rad}} \right) \right)$$

How can we
effectively limit this
term?


Concentrator cells

- Concentrator cells simply are mirrors that concentrate the light onto a solar cell.
- Concentrators are nice for 2 reasons:
 - Increase efficiency slightly.
 - You lower the solar cell cost.

$$V_{OC} = \frac{mkT}{q} \ln \left(\frac{j_{sc}}{j_0} + 1 \right)$$

$$V_{increase} = \frac{mk}{q} \ln \left(\frac{i_{con.}}{i_{uncon.}} \right)$$

Assume $m=1$ for ideal case

Concentrator cells

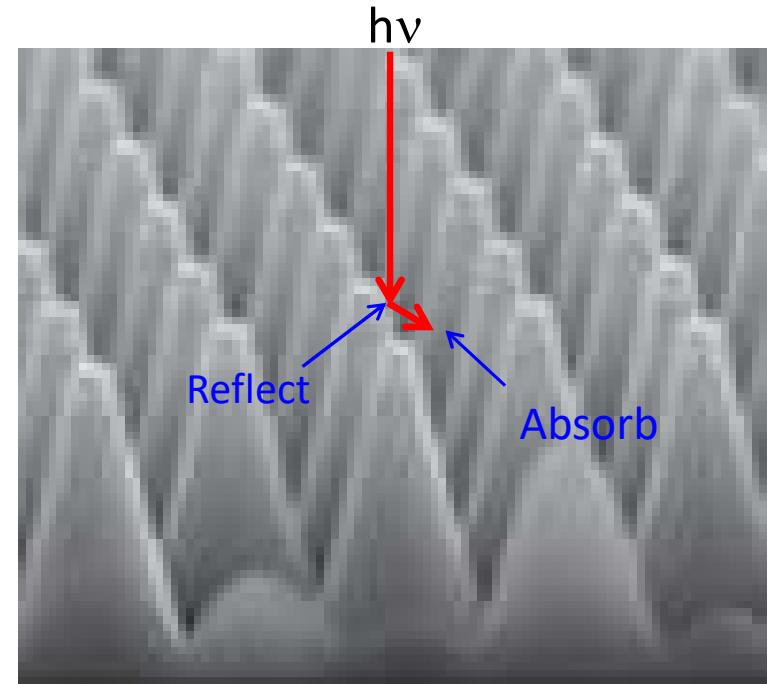
- If the solar cell cost is high (i.e. use rare or expensive materials, this approach is very beneficial.)
- These cells work good in direct sunlight, not indirect or diffuse sunlight, thus they need to track the sunlight
- Increase in temperature can be a major issue (*Why?*) and cooling systems are needed on these devices.
- Thus the economic viability of these cells is very geography dependent.
- Concentrators range from 10x concentration up to 1,000x.

Trying to 'Beat the system'

- Understanding all the terms.

$$V_{OC,Max} = \frac{E_G}{q} \left(1 - \frac{T}{T_S} \right) + \frac{kT}{q} \ln \left(\frac{T_S}{T} \right) - \frac{kT}{q} \left(\ln \left(\frac{\Omega_{Device}}{\Omega_{Sun} * \tau} \right) + \ln \left(4n_r^2 \right) + \ln \left(\frac{R_{rad}^{net} + R_{non}}{R_{rad}^{net}} \right) \right)$$

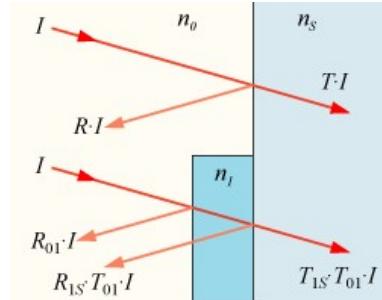
How can we effectively limit
this term?



Mitigating Light Reflection

$$r = \frac{(n_o - n_s)^2}{(n_o + n_s)^2}$$

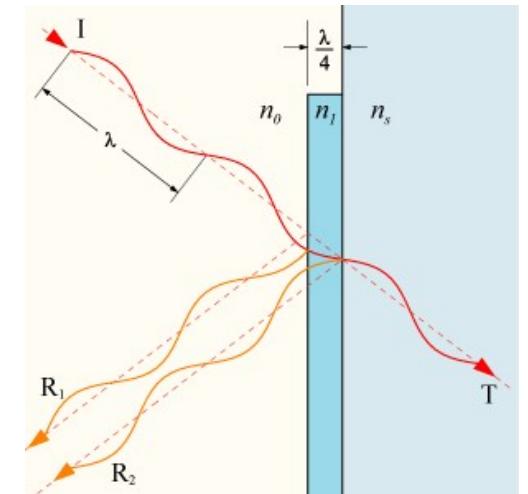
Air Substrate


- Strategies to reduce r
 - Nanotexturing the surface.
 - This allows the light to have multiple chances to get absorbed.
 - Basically $r_{eff} = r^n$ n= # of reflections
 - If the probability of reflection is 20%, and the light bounces off the semiconductor 3 times, the effective reflectivity is 0.8%.

Mitigating light reflection

- Antireflective coating- Approach #1
 - By having a coating with an intermediate n_1 , it is possible to decrease reflection losses.
 - The optimum index of refraction should be:

$$n_1 = \sqrt{n_0 n_s}$$



Ray diagram illustrating light reflection and transmission through a thin film of thickness $\lambda/4$ with refractive index n_1 , sandwiched between media with refractive indices n_0 and n_s . The diagram shows the following paths:

- Incident light I (red arrow) enters from the left.
- Direct transmission $T I$ (red arrow) passes through the film.
- Reflection from the top interface $R \cdot I$ (orange arrow) is partially reflected back.
- Reflection from the bottom interface $R_{01'} I$ (orange arrow) is partially reflected back.
- Transmission through the bottom interface $T_{1s'} T_{01'} I$ (orange arrow) is partially transmitted.

Remember: $r = \frac{(n_o - n_s)^2}{(n_o + n_s)^2}$

- Antireflective coating- Approach #2
 - If the anti-reflective layer is $\lambda/4$ the wavelength of incoming light, the reflected light will destructively interfere.
 - This is a limited approach since solar irradiation is not a single wavelength, but a range of wavelengths.

p-n Junctions

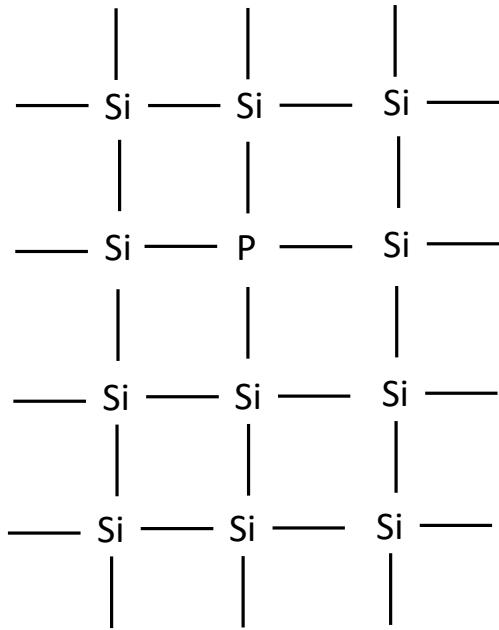
(may be done in Week 3)

Doping a
Semiconductor
i.e.
Changing the
Fermi level

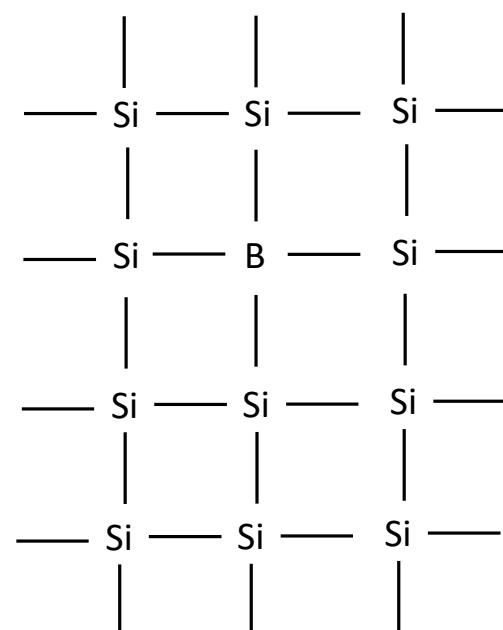
Periodic Table of Elements

The periodic table is color-coded to categorize elements. The 'p-type' region is highlighted in green and includes groups 13, 14, and 15. The 'n-type' region is also highlighted in green and includes groups 14 and 15. Arrows point from these labels to the respective green-highlighted areas.

1	2	3	4	5	6	7	8	9	10	13	14	15	16	17	18										
1 H Hydrogen 1.00794	2 He Helium 4.002602	3 Li Lithium 6.941	4 Be Beryllium 9.012182	5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.007	8 O Oxygen 15.9994	9 F Fluorine 18.9984032	10 Ne Neon 20.1797	11 Na Sodium 22.9897928	12 Mg Magnesium 24.3050	13 Al Aluminum 26.9815386	14 Si Silicon 28.0855	15 P Phosphorus 30.973762	16 S Sulfur 32.065	17 Cl Chlorine 35.453	18 Ar Argon 39.948								
11 Na Sodium 22.9897928	12 Mg Magnesium 24.3050	13 Al Aluminum 26.9815386	14 Si Silicon 28.0855	15 P Phosphorus 30.973762	16 S Sulfur 32.065	17 Cl Chlorine 35.453	18 Ar Argon 39.948	19 K Potassium 39.0983	20 Ca Calcium 40.078	21 Sc Scandium 44.955912	22 Ti Titanium 47.857	23 V Vanadium 50.9415	24 Cr Chromium 51.9981	25 Mn Manganese 54.938045	26 Fe Iron 55.845	27 Co Cobalt 58.933195	28 Ni Nickel 58.8934	29 Cu Copper 63.545	30 Zn Zinc 65.38	31 Ga Gallium 69.723	32 Ge Germanium 72.64	33 As Arsenic 74.92160	34 Se Selenium 78.95	35 Br Bromine 79.904	36 Kr Krypton 83.798
19 K Potassium 39.0983	20 Ca Calcium 40.078	21 Sc Scandium 44.955912	22 Ti Titanium 47.857	23 V Vanadium 50.9415	24 Cr Chromium 51.9981	25 Mn Manganese 54.938045	26 Fe Iron 55.845	27 Co Cobalt 58.933195	28 Ni Nickel 58.8934	29 Cu Copper 63.545	30 Zn Zinc 65.38	31 Ga Gallium 69.723	32 Ge Germanium 72.64	33 As Arsenic 74.92160	34 Se Selenium 78.95	35 Br Bromine 79.904	36 Kr Krypton 83.798								
27 Rb Rubidium 85.4678	28 Sr Strontium 87.82	29 Y Yttrium 88.90585	30 Zr Zirconium 91.224	31 Nb Niobium 92.90538	32 Mo Molybdenum 95.98	33 Tc Technetium (97.9072)	34 Ru Ruthenium 101.07	35 Rh Rhodium 102.9550	36 Pd Palladium 106.42	37 Ag Silver 107.8862	38 Cd Cadmium 112.411	39 In Indium 114.818	40 Sn Tin 118.710	41 Sb Antimony 121.750	42 Te Tellurium 127.80	43 I Iodine 126.90447	44 Xe Xenon 131.293								
55 Cs Cesium 132.9054519	56 Ba Barium 137.327	57 La Lanthanum 138.90547	58 Ce Cerium 140.118	59 Pr Praseodymium 140.90765	60 Nd Neodymium 144.242	61 Pm Promethium (145)	62 Sm Samarium 150.89	63 Eu Europium 151.904	64 Gd Gadolinium 157.25	65 Tb Terbium 158.92535	66 Dy Dysprosium 162.500	67 Ho Holmium 164.93032	68 Er Erbium 167.259	69 Tm Thulium 169.93421	70 Yb Ytterbium 173.054	71 Lu Lutetium 174.9668									
77 Fr Francium (223)	78 Rb Rutherfordium (281)	79 Hf Hafnium 178.49	80 Ta Tantalum 180.94788	81 W Tungsten 183.84	82 Re Rhenium 186.207	83 Os Osmium 190.23	84 Pt Iridium 192.217	85 Hg Platinum 195.084	86 Au Gold 196.966589	87 Hg Mercury 200.59	88 Tl Thallium 204.3833	89 Pb Lead 207.2	90 Bi Bismuth 208.98040	91 Po Polonium (208.9824)	92 At Astatine (209.9971)	93 Rn Radon (222.0178)									
104 Fr Rutherfordium (281)	105 Rb Dubnium (282)	106 Sg Seaborgium (286)	107 Bh Berkelium (284)	108 Hs Hassium (277)	109 Mt Meitnerium (288)	110 Ds Darmstadtium (271)	111 Rg Roentgenium (272)	112 Uub Ununbium (285)	113 Uut Ununtrium (284)	114 Uup Ununquadium (289)	115 Uup Ununpentium (288)	116 Uuh Ununhexium (292)	117 Uus Ununseptium (294)	118 Uuo Ununoctium (294)											


For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

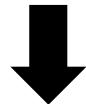
Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). <http://www.ptable.com/>


57 La Lanthanum 138.90547	58 Ce Cerium 140.118	59 Pr Praseodymium 140.90765	60 Nd Neodymium 144.242	61 Pm Promethium (145)	62 Sm Samarium 150.89	63 Eu Europium 151.904	64 Gd Gadolinium 157.25	65 Tb Terbium 158.92535	66 Dy Dysprosium 162.500	67 Ho Holmium 164.93032	68 Er Erbium 167.259	69 Tm Thulium 169.93421	70 Yb Ytterbium 173.054	71 Lu Lutetium 174.9668
89 Ac Actinium (227)	90 Th Thorium 232.03808	91 Pa Protactinium 231.03588	92 U Uranium 238.02891	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencium (262)

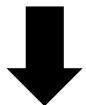
How to get an n-type or p-type material

- Here are the most common ways to make Si n-type or p-type.

n-type

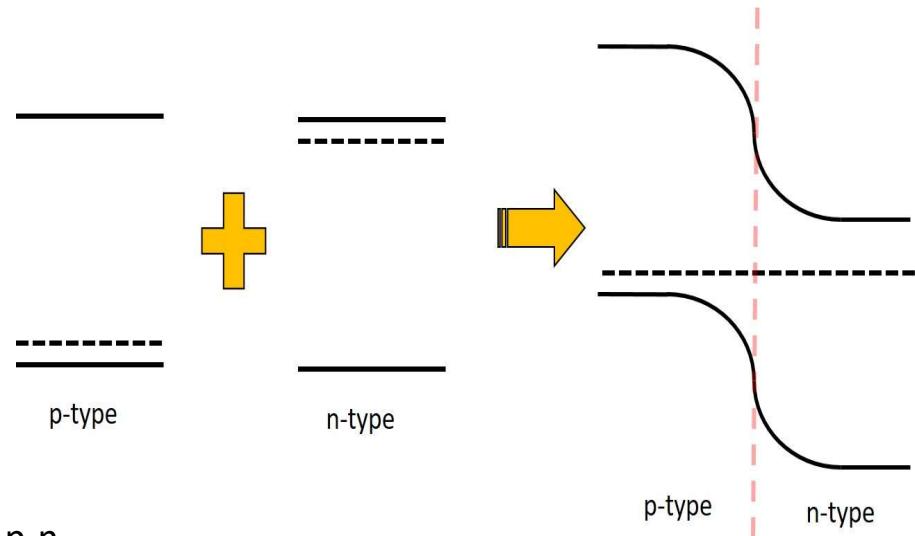

p-type

- Here are the most common ways to make Si n-type or p-type.

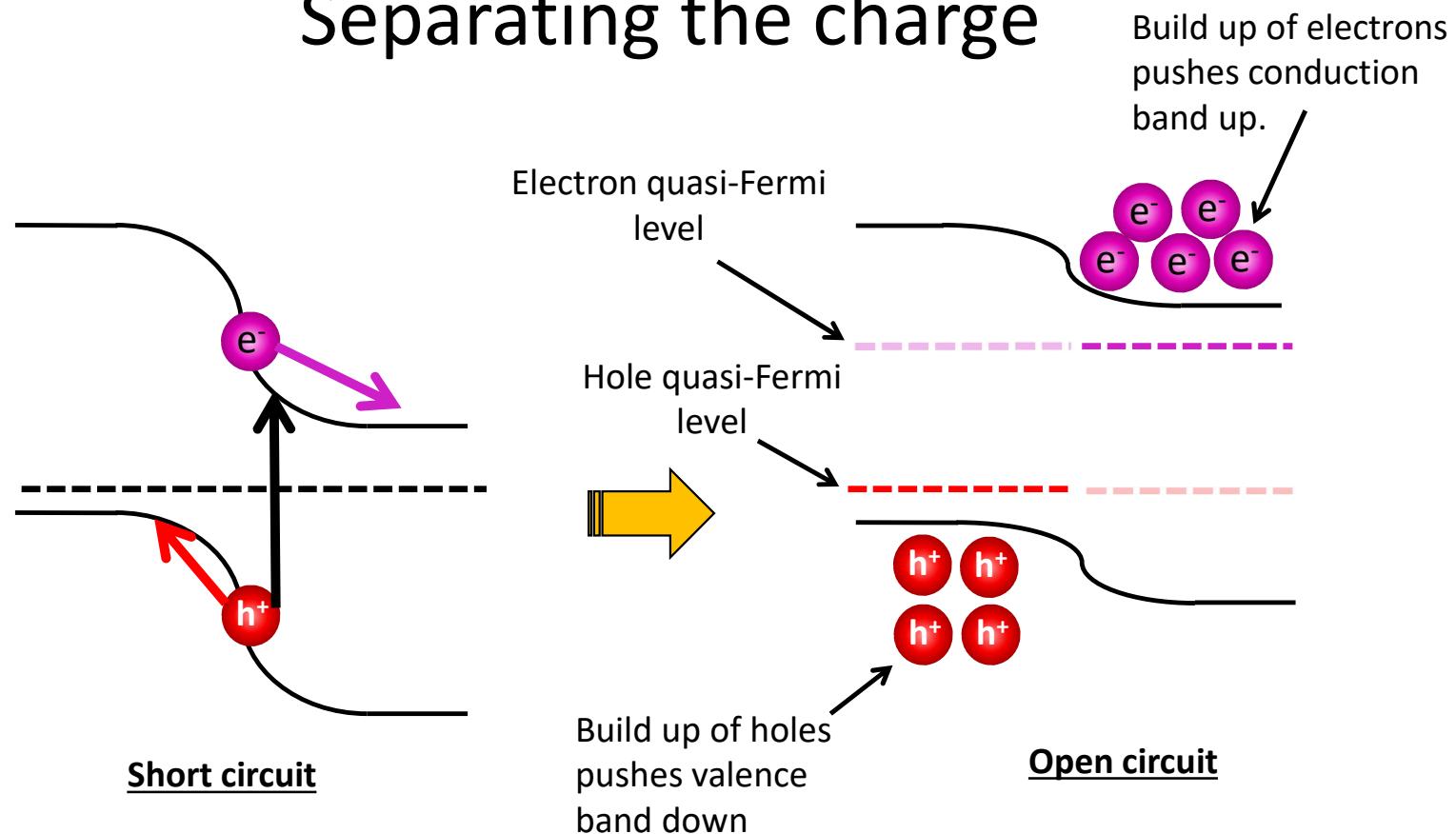

Separating the charge

- Creating a p-n junction allows us to create a built in electrochemical bias.
- At the interface charge transfers between n-side and p-side due to diffusion until it builds enough potential to make current = 0.

$$J_n(r) = q(D_n \nabla n + \mu_n n F)$$

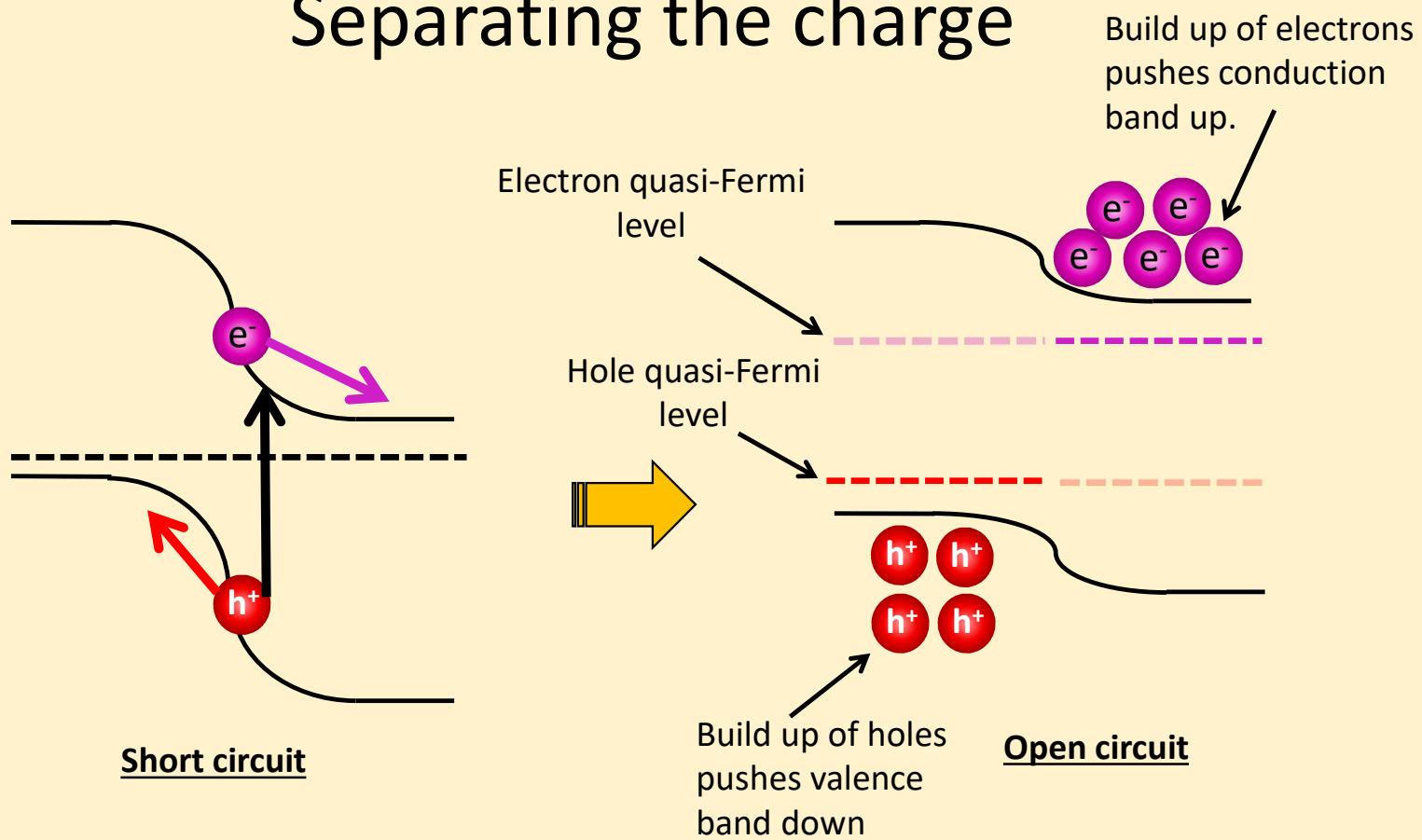


$$0 = q(D_n \nabla n + \mu_n n F)$$



$$F_{n-si} = \frac{-q D_n \nabla n}{\mu_n n}$$

Gradient at p-n junction



Separating the charge

- Just because an electron is in the conduction band, doesn't mean that this is the chemical potential of the electron.
- The chemical potential of the electron is that of the quasi Fermi-Level

Separating the charge

- Will the band-bending thickness be equally between the p and n side.

Doping Profiles

- The doping is inversely proportional to the doping density.

$$V_{p-type} = V_{Bias} \times \frac{N_D}{N_D + N_A}$$

N_A = Acceptor (p-type) density
 N_D = Donor (n-type) density

$$V_{n-type} = V_{Bias} \times \frac{N_A}{N_D + N_A}$$

- V_{bias} is the potential difference in Fermi levels between the n-type and p-type semiconductor.
- For more detailed description of these equations see [Malizia, et al, JMC-A, 2014.](#)

Doping Profiles

- Basically the high dopant density material has a stronger pull than the lower doped material.
- By using Poisson's equation to distribute the charge, we can determine the depletion width.

Depletion width
(band bending
thickness)

$$x_p = \left(\frac{N_D}{N_A} \frac{2\epsilon\epsilon_0 V_{bias}}{q(N_D + N_A)} \right)^{1/2}$$

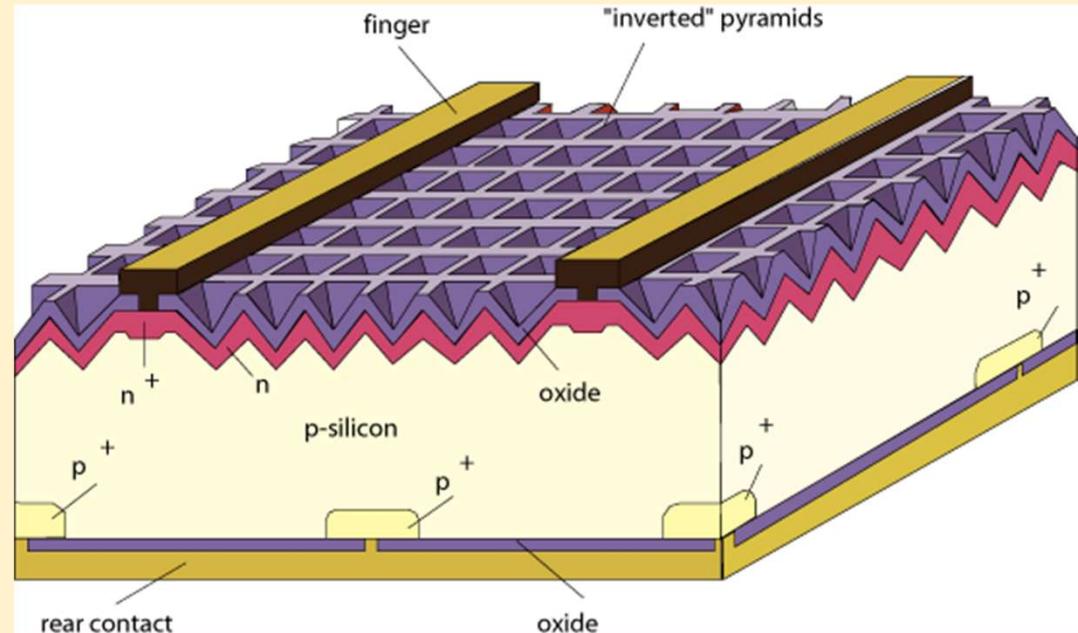
$$x_n = \left(\frac{N_A}{N_D} \frac{2\epsilon\epsilon_0 V_{bias}}{q(N_D + N_A)} \right)^{1/2}$$

ϵ = permittivity of semiconductor

ϵ_0 = permittivity in vacuum

V_{bias} = Total band-bending voltage (difference in p-n Fermi levels)

q = elementary charge


Concept Check

In a p-n junction solar cell, a p-type side has a dopant density of 10^{16} and an n-type side has a dopant density of 10^{20} . This means:

- a) The p-type has a larger voltage drop across it and a longer depletion layer.
- b) The p-type has a larger voltage drop across it and a shorter depletion layer.
- c) The n-type has a larger voltage drop across it and a longer depletion layer.
- d) The p-type has a larger voltage drop across it and a shorter depletion layer.

State of the art - 2013

- Creating small point contacts allows for minimal surface recombination.
- Doping both sides prevents charge carriers from going to the wrong contact.
- Creating small point contacts allows for minimal surface recombination.
- This approach gave a record efficiency of 24.7%.
- What is the biggest failure of this device?

State of the art - Current

- Panasonic decided to put both the electron and hole contact on the same side.
- This eliminated light shading by the electrical contact fingers and allowed complete surface passivation on one side.
- Amorphous Si was used as back contacts because they minimize recombination losses.
- This device reached a record 26.7% efficiency.
- It is still surprising that having both the p and n junction near each other gives such good efficiency.

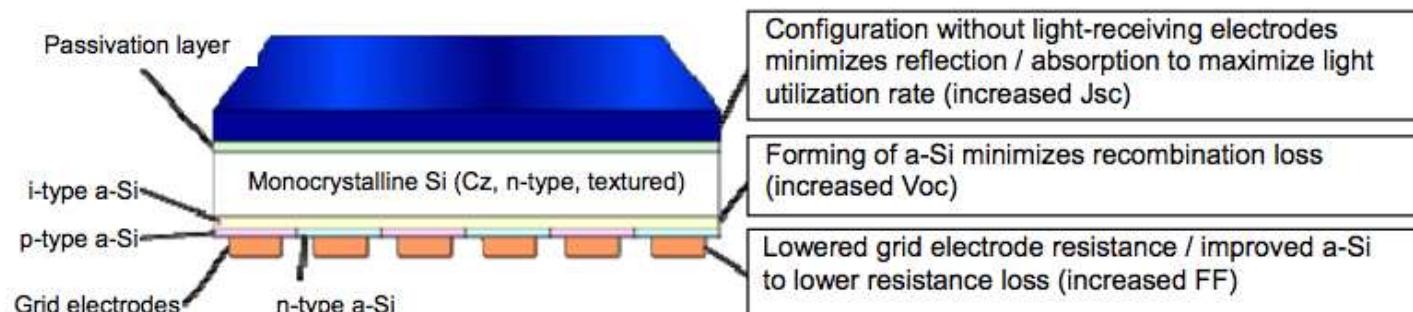


Image from [Natural Group](#)

Lecture - Learning Objectives

At the end of this lecture you should:

- Understand the detailed balance for solar cells, and why maximum efficiency for a single photoabsorber is 33%
- Be able to analyze the basic principles of photovoltage and factors that can effect it
- Understand how p-n junctions work and their relation to solar cells.

Exercises

- Currently the best crystalline Se solar cells have an open circuit voltage of 1.2 V at 10 times solar concentration. What is their thermodynamic maximum voltage they can achieve? Is it worth investing more research money into this material?
- If I use TiN as an antireflection layer on Silicon, how much will I reduce the reflection by (at a wavelength of 590 nm)?
- At 8 AM my silicon solar cell has a short circuit current of 100 A and an open circuit voltage of 0.6 V and a fill factor of 80%. What is its maximum power? Now At 12 PM there is 4 times more light (but the same temperature, and same fill factor). In theory, how much will my solar cell produce at this time?