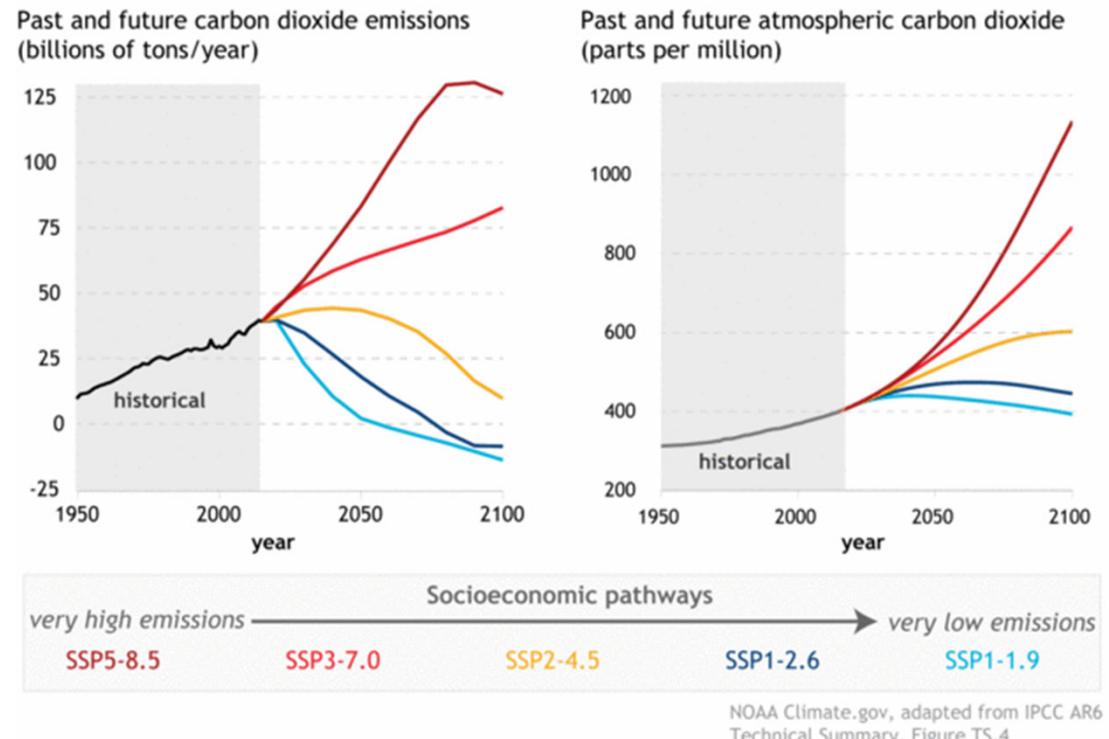


CO₂ capture and storage

From [Science](#)

From [Link](#)


Learning objectives

- How plants capture CO₂
- How industry captures CO₂ currently
- How direct air capture works
- How pH swing CO₂ capture works
- Physics behind CO₂ storage

CO₂ capture – overall numbers

- According to IPCC to maintain 1.5 C, we should sequester 10 billion ton/yr and be at 125 billion Gton by 2100.

- We expect this to be necessary as of 2050.
- If we do this too early though, people will think burning fossil fuels is OK

Thermodynamics of CO₂ capture from air

- Currently we have ~400 ppm in the air.
- We need to upconcentrate this to ~100% CO₂ to either store it or use it
- Concentration entails an entropic loss. How big is this loss in KJ/mol CO₂ at 298K? *(For perspective, methane has 890 KJ/mol)*

Entropy of mixing

$$\Delta S = -R \sum X_{i,final} \ln \left(\frac{X_{i,initial}}{X_{i,final}} \right)$$

Physist to chemist conversion

$$R = k_B N_A$$

R = 8.31 J/K/mol

MW of CO₂ = 44 g/mol

k_B = Boltzmann's constant

R = Ideal gas constant

N_A = Avogadro's number

Thermodynamics of CO₂ capture

$$\Delta S = R \left[100\% * \ln \left(\frac{4 \times 10^{-6}}{100\%} \right) + 100\% * \ln \left(\frac{0,9996}{100\%} \right) \right]$$

$$\Delta S = 65 \text{ J/mol/K}$$

$$\begin{aligned} T\Delta S &= 65 \text{ J/mol/K} * 298 \text{ K} = 19.4 \text{ kJ/mol CO}_2 \\ &= 5 \text{ kWh/ton CO}_2 \end{aligned}$$

- *Or equivalently 2% the energy density of a mol of methane*

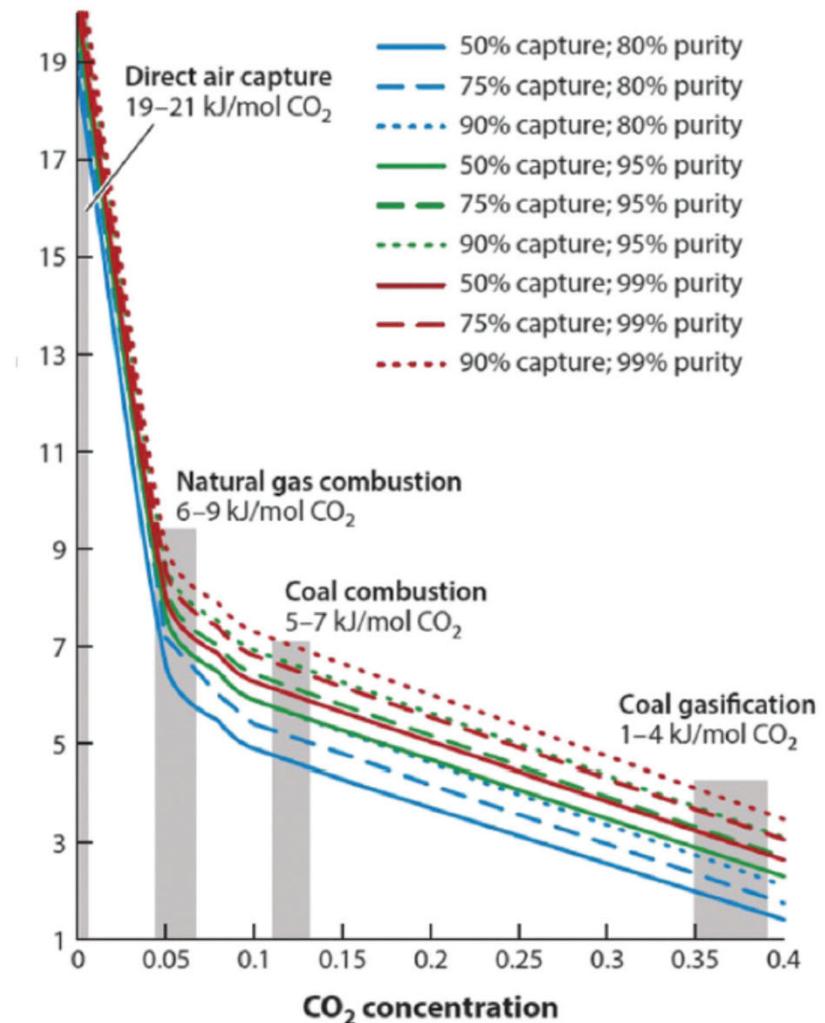
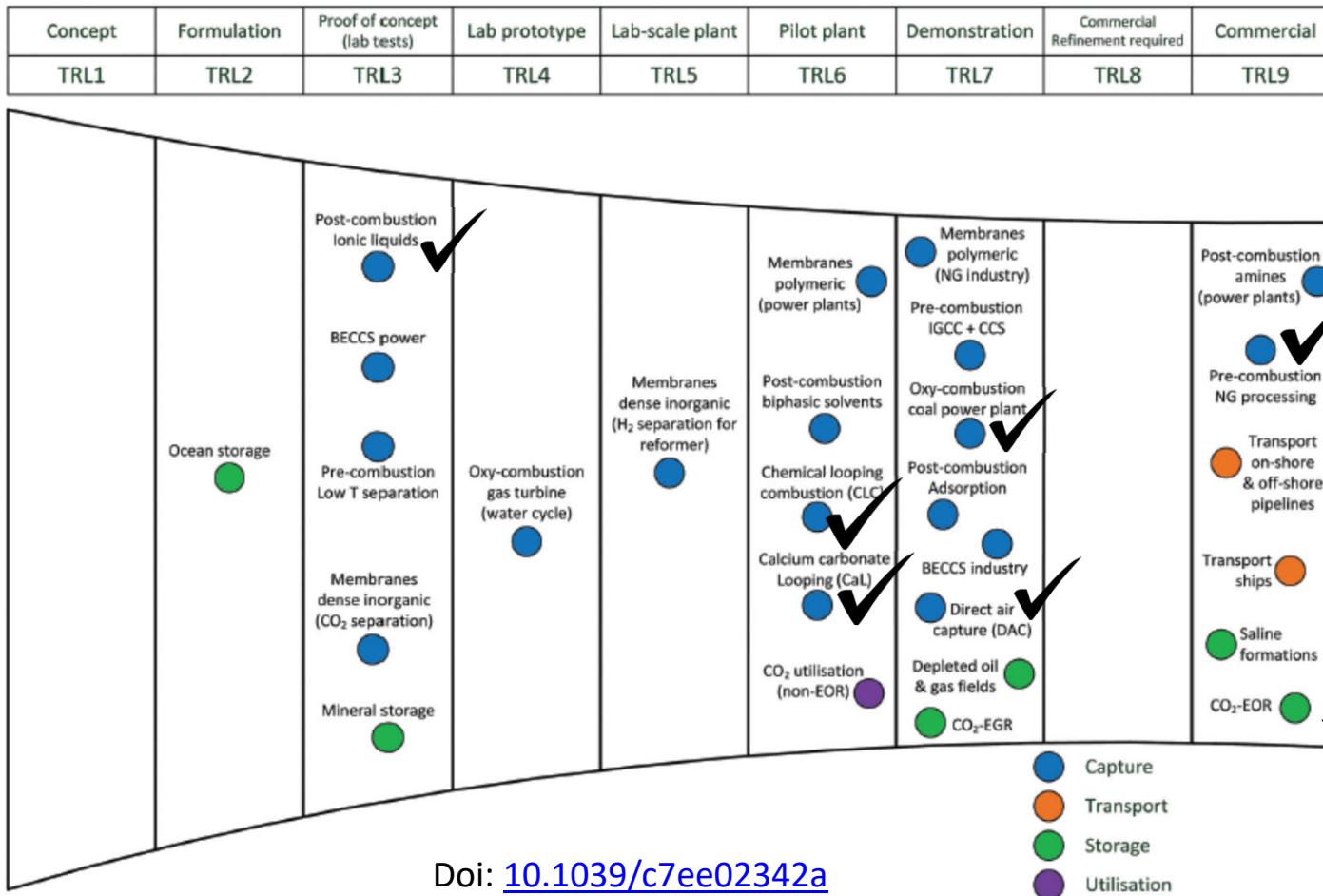


Fig. 27 Minimum work required for CO₂ capture based upon initial CO₂ concentration, capture rate, and final CO₂ purity.³⁰⁸

Broader analysis


- More concentrated CO₂ means easier capture.
- For direct air capture, 10-15x the thermodynamic minimum is where we are currently.

CO₂ capture- flue gas

- CO₂ capture from post-combustion gas is much more concentrated.
- Power plants bring in NO_x, SO_x, and ash (e.g. CaCO₃) which can contaminate things
- Low temperature of biomass, increase CO production
- Fossil power plants have heavy metals like Pb, Hg, etc.

	Gas	Oil	Coal	Biomass
CO ₂	9 %	12%	14%	13%
H ₂ O	19 %	11%	9%	12%
O ₂	2 %	3%	3%	4%
N ₂	70 %	74%	74%	71%
NO _x (mg/MJ)	46	600-1000	99	48-200
SO _x (mg/MJ)	4		11	1-100
CO (mg/MJ)	6			70-900
Volume (m ³ / GJ fuel)	295	303	323	

CO₂ capture overview

How plants capture CO_2

- When guard cells are hydrated, they open up
- This allows air (O_2 , CO_2 , etc) to enter
- We roughly lose 400 waters per CO_2 molecule
- Stomatal density on leaves decreases when CO_2 concentrations increase. This is 5-67% depending upon leaf and conditions.
- The opening mechanism is thought to be related to salt (K^+ , Ca^+) concentration affecting the pressure in the guard cells, allowing them to open/close.

Enzyme kinetics

- Michaelis–Menten kinetics is basically mass-transfer incorporated reaction kinetics for enzymes.
- Michaelis constant gives an effective inverted activity constant for a given enzyme.
- The K_m for Rubisco $\approx 20 \mu\text{M}$
- With CO_2 in atmosphere = 400 ppm, and the Henry's Law constant for CO_2 in water, this means we have 10 μM dissolved CO_2 .

$$\frac{v}{V_{max}} = \frac{A}{K_m + A} = \frac{10}{20 + 10} = 30\%$$

Rubisco is only operating at 30% maximum capacity

Michaelis–Menten kinetics

$$v = \frac{dp}{dt} = \frac{V_{max}A}{K_m + A}$$

↓

$$\frac{v}{V_{max}} = \frac{A}{K_m + A}$$

K_m = Michaelis constant
(Concentration at 50% V_{max})

v = reaction rate

V_{max} = Maximum rate

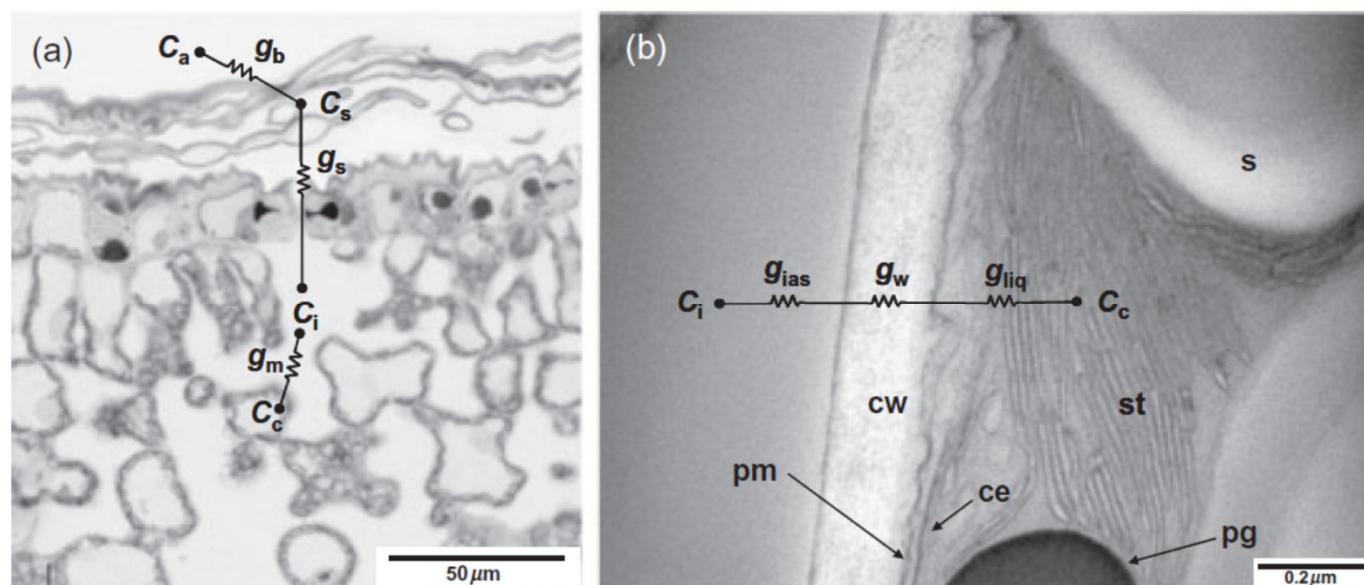
A = substrate concentration (related to, but not same as CO_2 concentration)

CO₂ – From atmosphere to Rubisco enzyme

- We can effectively model the path of CO₂ as going through various 'resistors' or 'conductance' or 'diffusion coefficients', from the atmosphere to Rubisco.
- The conductance of g_b and g_m are on the same order of magnitude.

C_a =CO₂ in atmosphere

C_s =CO₂ in leaf surface


C_i =CO₂ in intercellular air space

C_c =CO₂ in chloroplast

g_b = Boundary layer conductance
(localized mass transfer issues in air)

g_s = Stomatal conductance

g_m = Mesophyll conductance

Doi: [10.1111/j.1365-3040.2007.01757.x](https://doi.org/10.1111/j.1365-3040.2007.01757.x)

Stomatal conductance

- The simplest and most used is the Ball-Berry model

$$g_s = m * A_n \frac{H_s}{C_s} + g_o$$

A_n = net CO₂ consumption rate

C_s = CO₂ in leaf surface

H_s = relative humidity

m = slope

g_o = y-intercept

Very empirical

- H_s relates to openness of stoma
- m is typically between 4-10 depending upon the plant
- To the right are more complex models to determine g_s .

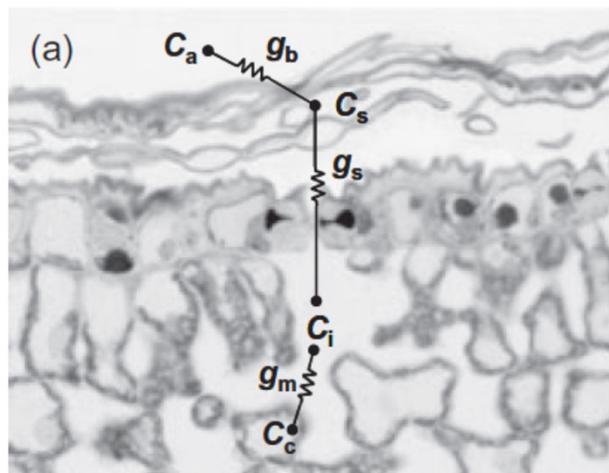
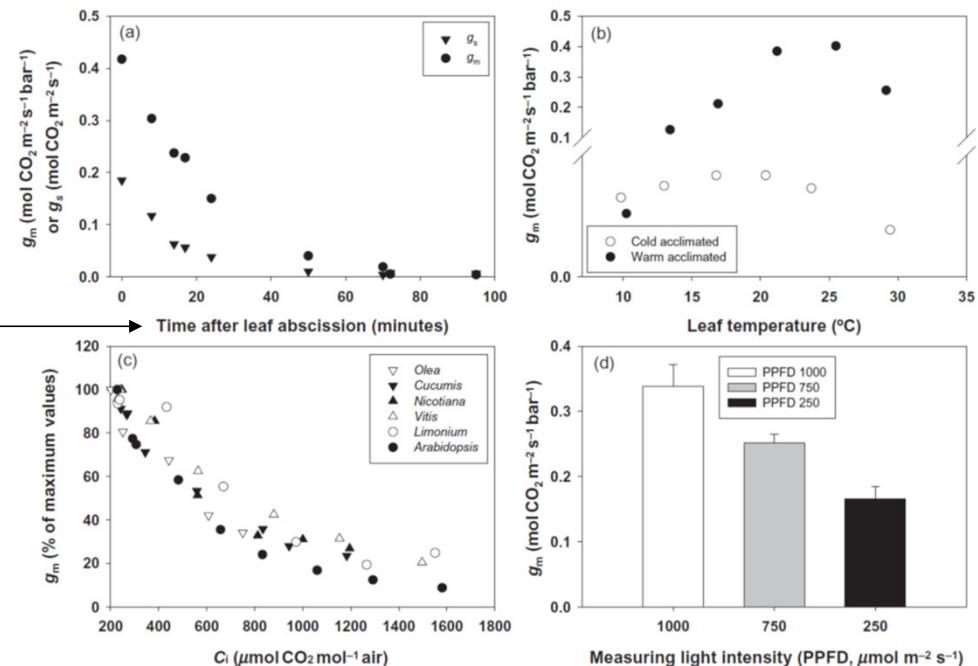
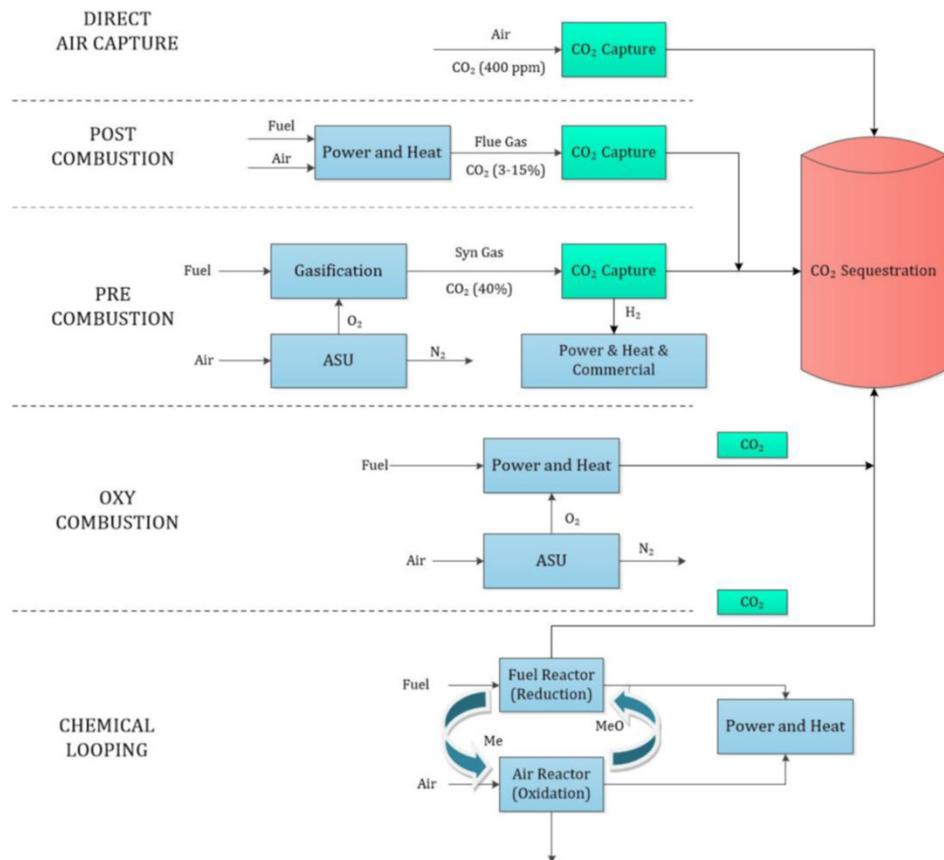

Doi: [10.1111/j.1365-3040.2010.02181.x](https://doi.org/10.1111/j.1365-3040.2010.02181.x)

Table 2. Equations relative to the models of g_s


1.	Jarvis 1976	$g_s = f_1(Q) \cdot f_2(T_i) \cdot f_3(VPD) \cdot f_4(C_n) \cdot f_5(\Psi_i)$
2.	White <i>et al.</i> 1999	$g_s = g_{max} \cdot f(Q) \cdot f(T_i) \cdot f(VPD)$
3.	Noe & Giensch 2004	$g_{sw} = g_{max} \cdot \min[f(Q), f(VPD)]$
4.	Lohammer <i>et al.</i> 1980	$g_s = \frac{1}{\left(1 + \frac{VPD}{D_s}\right)}$
5.	Monteith 1995	$g_s = g_{max} - a \cdot VPD$
6.	Monteith 1995	$g_s = a(1 - b \cdot E)$
7.	Delwiche & Cooke 1977	$A_s = \pi \cdot L_s \cdot L_n \quad L_n = f(P_s, P_{sat})$ + a set of differential equations integrated A_s et P_{sat} , water potentials, osmotic potentials, water vapour resistances and water fluxes
8.	Dewar 1995	$g_s = \chi(A_s - \Delta \Psi)$ $\Delta \Psi = \frac{E}{k}$ $\Delta \Psi = f(A_{sat}, C_i, g_s)$
9.	Ball <i>et al.</i> 1987	$g_s = g_0 + a \cdot A_{sat} \frac{H_s}{C_s} \quad g_s = g_0 + g_{max} \frac{A_{sat} \cdot H_s}{C_s}$
10.	Aphalo & Jarvis 1993	$g_s = \frac{A_{sat}}{C_s} [k_0 + k_1 \cdot VPD + k_2 \cdot T_i + k_3 \cdot T_i \cdot VPD]$
11.	Leuning 1990	$g_s = g_0 + a \cdot A_{sat} \frac{H_s}{C_s - \Gamma}$
12a	Leuning 1995	$g_s = g_0 + a \cdot \frac{A_{sat}}{\left(1 + \frac{VPD}{D_s}\right) \cdot (C_s - \Gamma)} \quad g_s = g_0 + g_{max} \frac{A_{sat}}{\left(1 + \frac{VPD}{D_s}\right) \cdot (C_s - \Gamma)}$
12b	Supply function and biochemical model of A_{sat}	$A_{sat} = 1.6 \frac{A_{sat}}{C_s \left(1 - \frac{C_s}{C_i}\right)} \quad A_{sat} = f(J_{max}, V_{max}, R_d, Q_c, C_p, H_r, T_i)$
12c		$g_s = 10^5 p \cdot T \quad T = f(A_{sat}, E, J_{max}, V_{max}, Q_c, T_b, R_d, RuBP_{pde}, \dots)$ $g_s = G^*(A_{sat} - A_{min}) \quad G^* = G - x \cdot E$
13.	Farquhar & Wong 1984	$g_s = g_{max} \cdot f(Q) \cdot f(T_i) \cdot f(VPD) \cdot f(\delta \theta) = 1 - \exp[k_d(\delta \theta - \delta \theta_m)]$
14.	Jarvis & Davies 1998	$g_s = f(Q) \cdot f(T_i) \cdot f(VPD) \cdot f(\Psi_{pd}) = g_{max} - a(\Psi_{sat} - \Psi_{pd})$
15.	Stewart 1988	$g_s = g_{max} \cdot f(Q) \cdot f(T_i) \cdot f(VPD) \cdot f(\Psi_{pd}) = g_{max} \exp[-1.278(\Psi_{pd})]$
16.	Misson <i>et al.</i> 2004	$f(\Psi_{pd}) = 1.09 \exp^{-1.278(\Psi_{pd})} \quad S(\Psi) = \frac{1}{n} \sum (-\Psi_{pd} - 0.2)$
17.	MacFarlane <i>et al.</i> 2004	$g_s = \begin{cases} 0 & \text{if } VPD > \exp(-b_0/m) \\ g_{max} & \text{if } VPD > \exp(-(b_0 - \tau)/m) \\ \frac{m \cdot \ln(VPD) + b_0}{\eta} & \text{else} \end{cases}$ $g_{max} = \tau \cdot \exp\left(\frac{\rho \cdot \Psi_{pd}}{T_{pd}}\right) \cdot \frac{4 \cdot (T_{max} - T_{pd})(T_{min} - T_{pd})}{(T_{max} - T_{min})^2}$
18.	Ogle & Reynolds 2002	$g_{sw} = GFAC \cdot \frac{\sum P}{\sum ETP}$ $g_{sw} = b + a \cdot \Psi_{pd} \quad \text{if } \Psi_{pd} < -1 \text{ MPa}$ $g_{sw} = \frac{m}{1 + \left(\frac{\Psi_{pd}}{\Psi_{sat}}\right)^k}$ $g_s = a \cdot \min\left(1; 10 \cdot \frac{\theta_s - \theta_t}{3(\theta_{sat} - \theta_t)}\right)$
19.	Tenhunen <i>et al.</i> 1990	$g_{max} \cdot g_s = a \left[1 - k_d \exp\left(k_d \frac{\theta_s - \theta_t}{\theta_{sat} - \theta_t}\right)\right]$
20.	Baldocchi 1997	$g_s = a \cdot f_{max} \quad f_{max} = \min(1; k_1 + k_2 \cdot DOY)$
21.	Sala & Tenhunen 1996	$g_s = g_s + \alpha \cdot \exp([ABA] \cdot \beta \cdot \exp(\delta \Psi_i)) \quad [ABA] = \frac{J_{ABA}}{J_s + b} = \frac{a \cdot \Psi_i}{J_s + b}$
22.	Misson <i>et al.</i> 2004	$J_s = \frac{\Psi_s - \Psi_{pd}}{R_d} \text{ et} \quad J_s = \frac{\Psi_s - \Psi_{pd}}{R_d}$
23.	Wang & Leuning 1998	$g_s = \exp(-\beta [ABA]) \cdot m \frac{A_{sat} \cdot H_s}{C_s}$
24.	Van Wijk <i>et al.</i> 2000	
25.	Uddling <i>et al.</i> 2005	
26.	Tardieu & Davies 1993	
27.	Gutschick & Simonneau 2002	

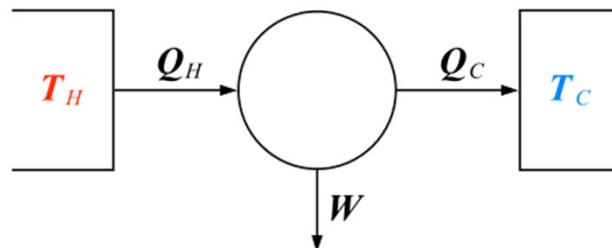
Mesophyll conductance

- g_m values can vary from 0.1-1.0 mol $\text{CO}_2 \text{ m}^{-2} \text{ s}^{-1} \text{ bar}^{-1}$, with no simple trend why.
- Environmental effects can also effect the value significantly.


Abscission =
leaf fall off tree

Doi: [10.1111/j.1365-3040.2007.01757.x](https://doi.org/10.1111/j.1365-3040.2007.01757.x)

Industrial CO₂ capture


- Combustion involves hydrocarbons + air
- When to separate the O₂, N₂ and HC/CO₂ is the big debate.
- Many approaches are situation dependent.

[Dubey, et al. 2022, J. Cleaner Prod.](#)

Carnot efficiency

- In a heat engine, you are simply going from a hot temperature source (T_H) to a cold temperature source (T_C).

$$Q_H = W + Q_C$$

$$\eta_{Carnot} = \frac{W}{Q_H} = \frac{Q_H - Q_C}{Q_H} = 1 - \frac{Q_C}{Q_H} = 1 - \frac{T_C}{T_H}$$

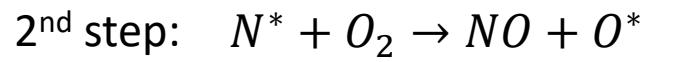
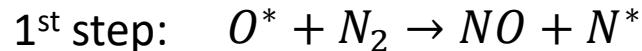
- The Carnot Efficiency is the maximum efficiency you will ever get from a heat engine.

Heat engine - limitations

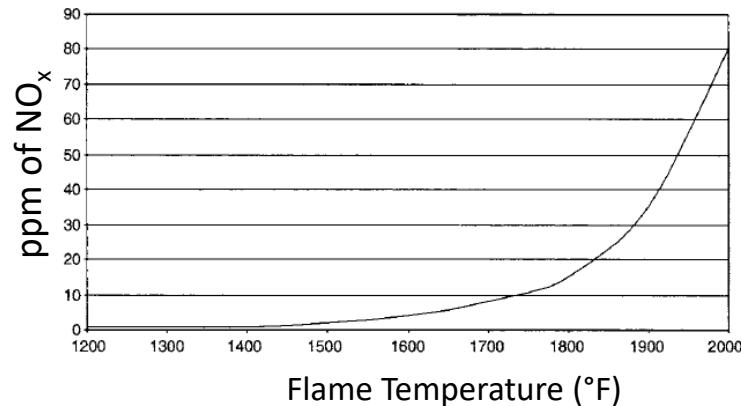
- In theory we are limited by the flame temperature of our energy source.
- In reality we are limited by the materials used for our heat engine.
- Currently boilers operate around 800 K.
- ASME SA516- steel is typically used for boilers.

Fuel	Flame Temperature (K)	Carnot Efficiency	Carnot Efficiency with Irreversibility
Coal	2446	87,8%	65,1%
Natural Gas	2327	87,2%	64,2%
Fuel Oil	2302	87,1%	64,0%
Wood	2143	86,1%	62,7%
Hydrogen	2573	88,4%	66,0%

Wikipedia

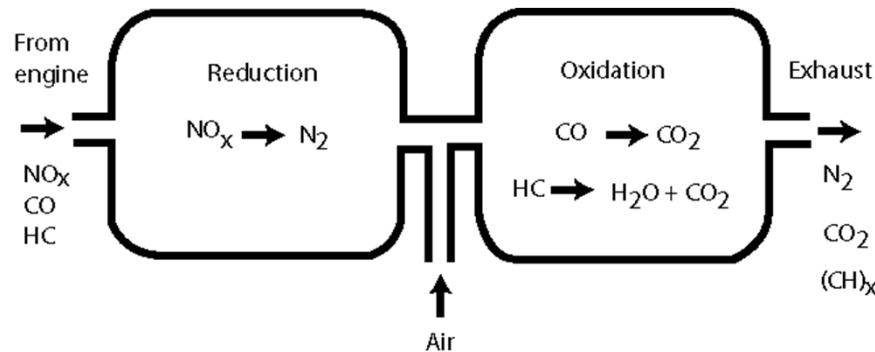


Material	Max Operating Temperature(K)
Carbon Steel	1023
Ni-Cr Steel	1700
Copper	480
Aluminum	423-523
Titanium	813
Plastics	323-473
Alumina	1700-2000

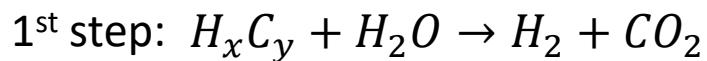
Random sources



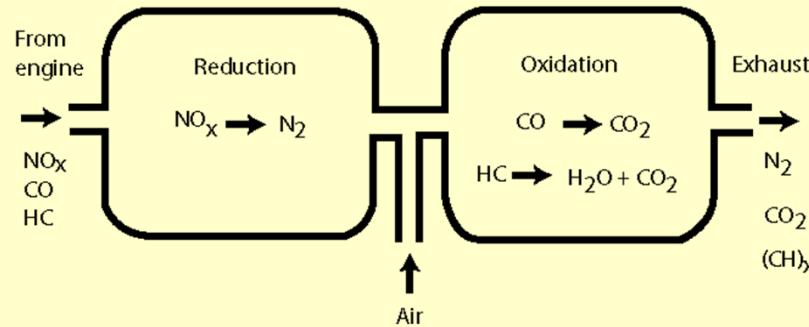
Heat engine - limitations

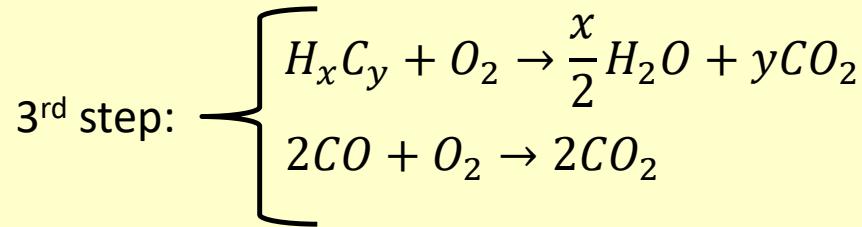
- NO_x is a pollutant that forms increasingly at high temperatures.
- The mechanism is based off an oxygen radical interacting with N_2 .


- Since air is 80% N_2 20% O_2 , we are kind of stuck with this reaction.
- See [here](#) for more details.


[Boyce, P. M, 2002, "Gas turbine engineering handbook, pg. 414"](#)

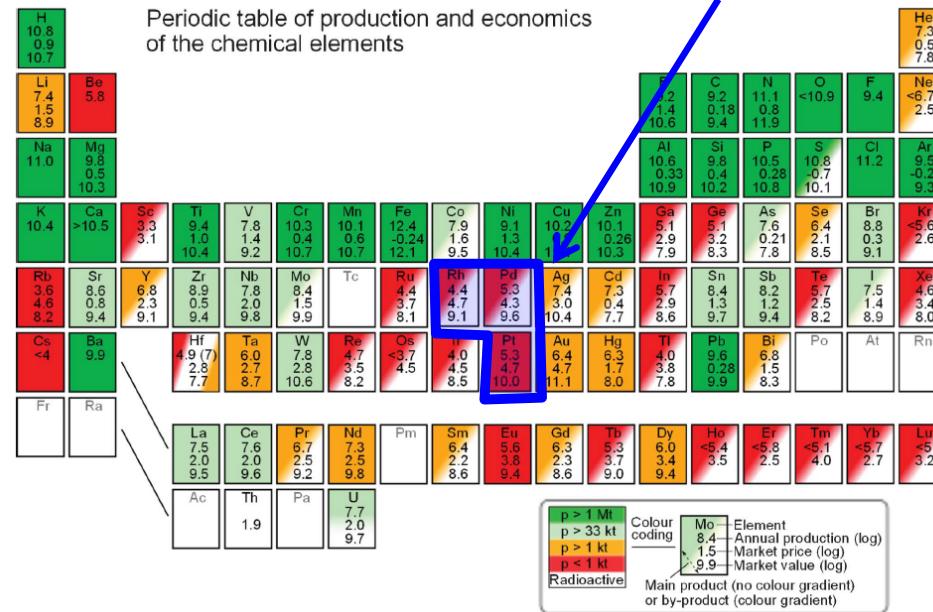
Catalytic converters


- Can we catalyze our way out of the NO_x issue? –Yes !
- 3-way catalytic converters allow us to do this.


- Unburnt hydrocarbons (H_xC_y) react with the water (created during combustion) to form H_2 gas.
- The H_2 gas then reduces the NO_x .

Catalytic converters

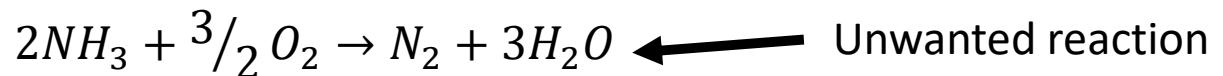
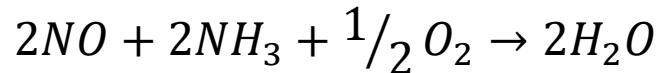
- Further down the line, CO and any remaining hydrocarbons get oxidized from additional air (i.e. O_2).



- Why can't we add air in from the beginning?
- While these reactions are quite efficient, the catalysts are quite expensive.

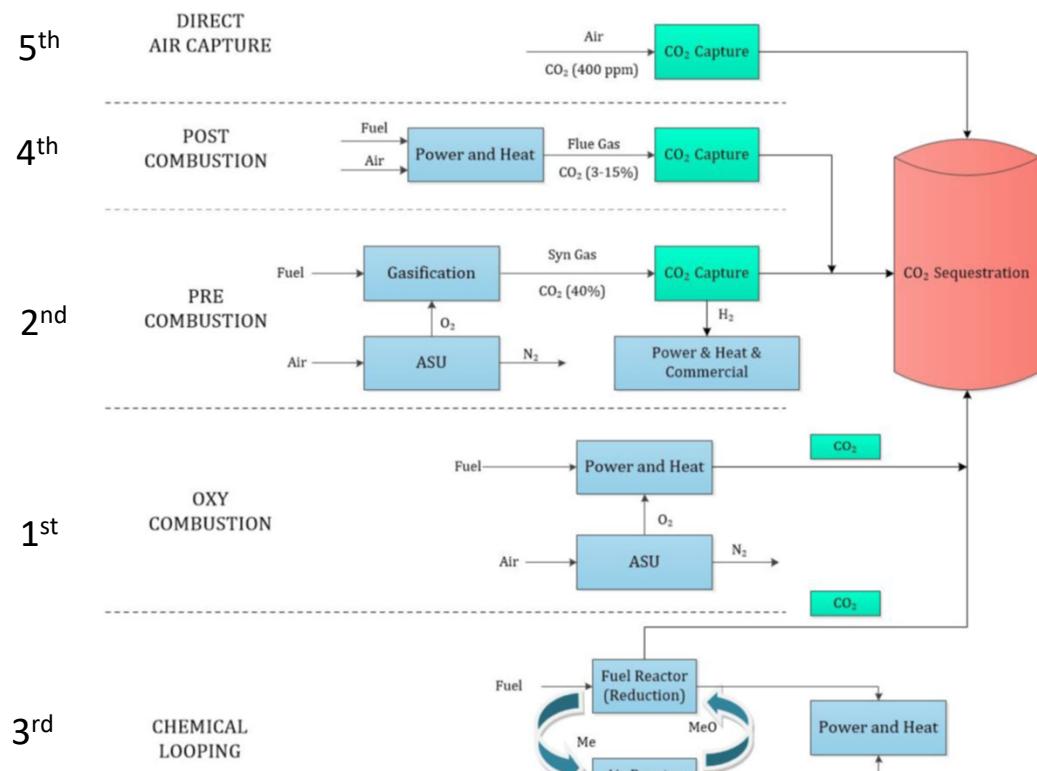
Catalytic converters

- Per car in the EU, catalytic converters contain:
 - 3 g platinum
 - 2.5 g palladium
 - 0.5 g rhodium



We need to use these materials

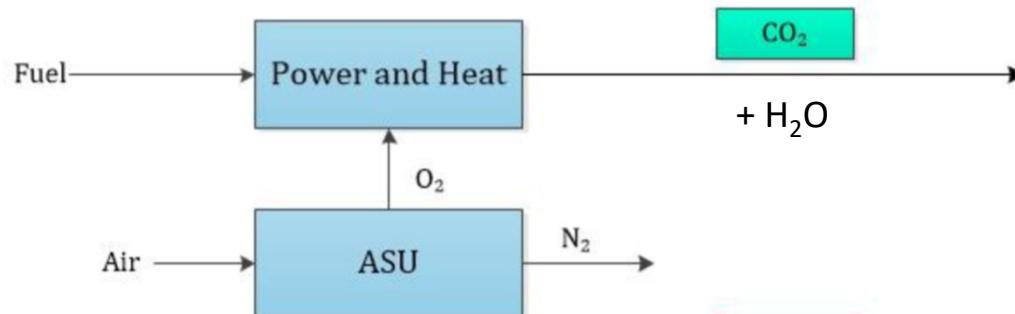
- 80% of the world's rhodium supply goes towards catalytic converters.
- Rhodium costs are a major reason why governments don't set lower NO_x emission rates.

NO_x removal in power plants

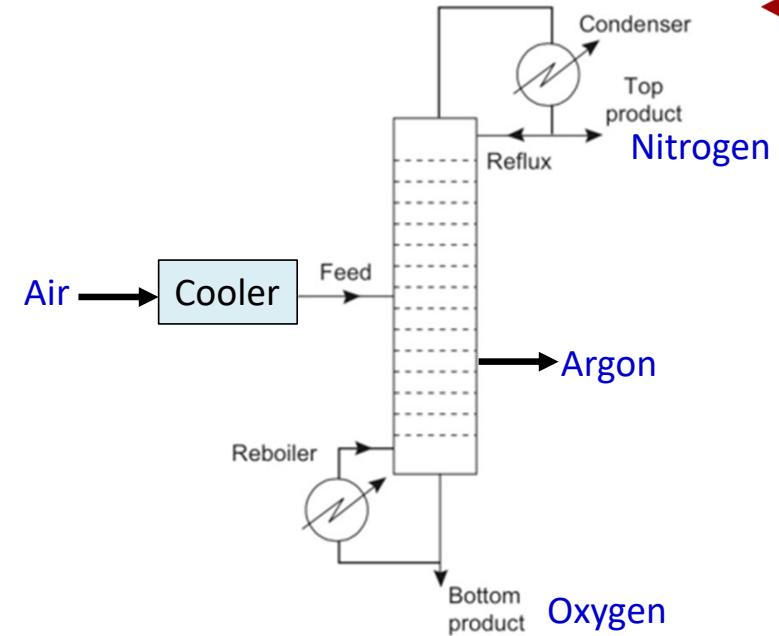

- Power plants differ from internal combustion engines via two major points
 - They are run 24 hours a day where ICE operates maybe 5-10% a day
 - The scale and stationary aspect means we can add reactants to remove NO_x
- Ammonia is typically used as a reductant with a vanadium-tungsten-titanium (VWT) catalyst.

- Biomass combustion has lots of potassium, which poisons the catalyst.

Industrial CO₂ capture

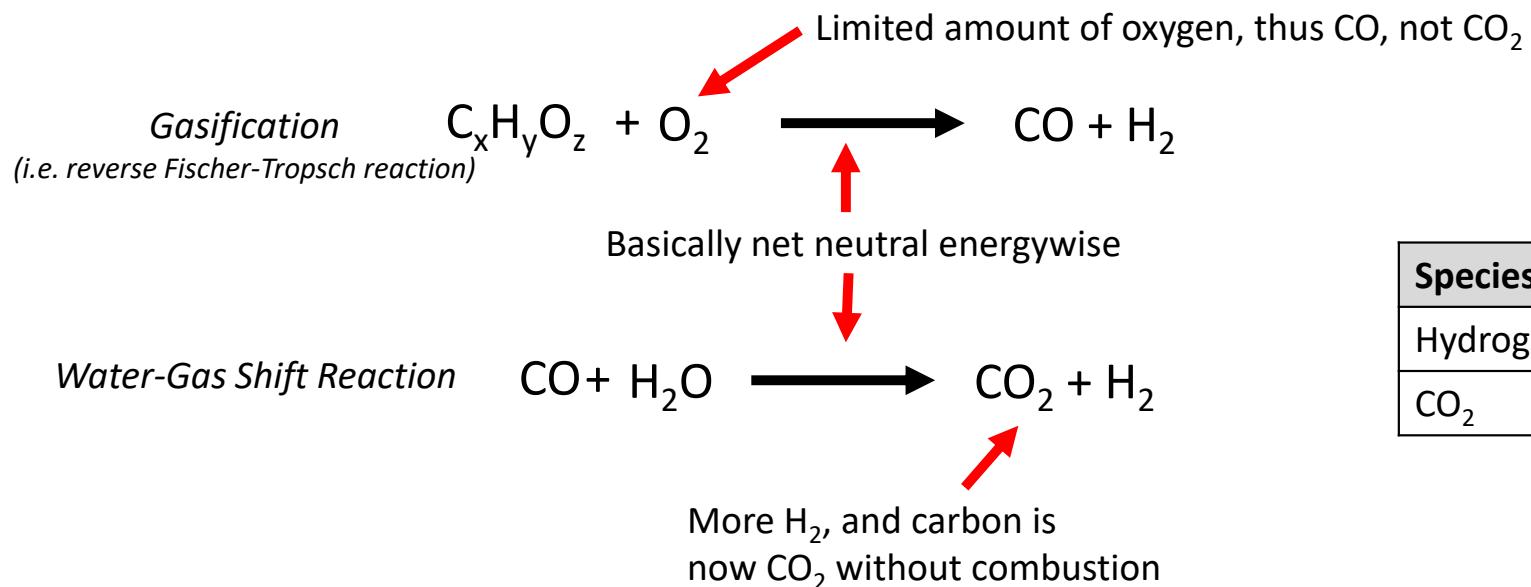

- Combustion involves hydrocarbons + air
- When to separate the O₂, N₂ and HC/CO₂ is the big debate.
- Many approaches are situation dependent.

[Dubey, et al. 2022, J. Cleaner Prod.](#)


Oxy-combustion

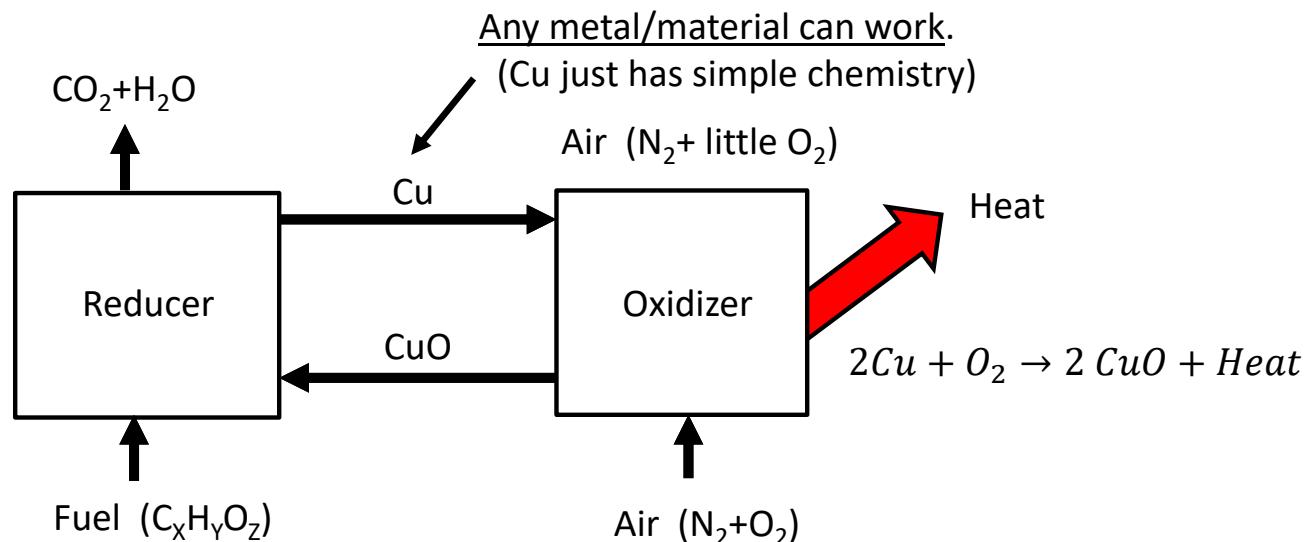
- In this case, we separate air into O_2 and N_2 .
- As air is 80% N_2 , this reduces separation issues once combusted.
- Removing N_2 also resolves NO_x issues, allowing higher temperatures.
- As we want dry CO_2 to store/utilize, we can completely condense the water and gain energy from heat of condensation.

Direct air separation


- Air is separated by cryogenic distillation.
- As the cooling unit, must go to temperatures below 77K, there is substantial energy involved in this process.
- This process was discovered by Carlos von Linde, who created the company Linde Air /Praxair.
- Other methods such as pressure-swing absorption and molecular sieves are also have potential for air separation.

Material	Boiling point (K)
Nitrogen	77.4
Argon	87.3
Oxygen	90.2
CO ₂	195

Pre-combustion


- For pre-combustion we need to first separate the carbon from the hydrogen as CO_2 .
- Then we just burn the hydrogen.
- This is often used with coal and the overall process produces 6-10% in losses.

Species	Boiling point (K)
Hydrogen	20
CO_2	195

Chemical looping

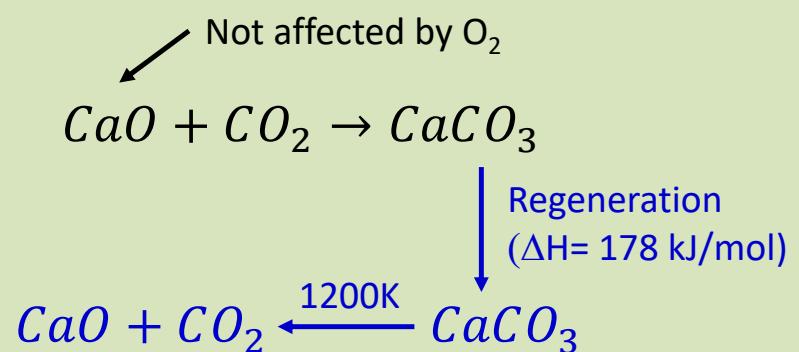
- We transfer the energy emission to a recyclable source.
- The fuel works as a reducer rather than an oxidizer.

Chemical looping

- ΔG needs to be negative for the reaction to occur
- ΔG is the driving force, but ΔH is what gives us heat for a heat engine.
- Fe_2O_3 , MnO or FeTiO_3 are used as metals due to good redox potential and being cheap
- Chemical looping is estimated to add 20 €/tonne of CO_2 with an energy penalty was 4%.
- This is an early stage technology

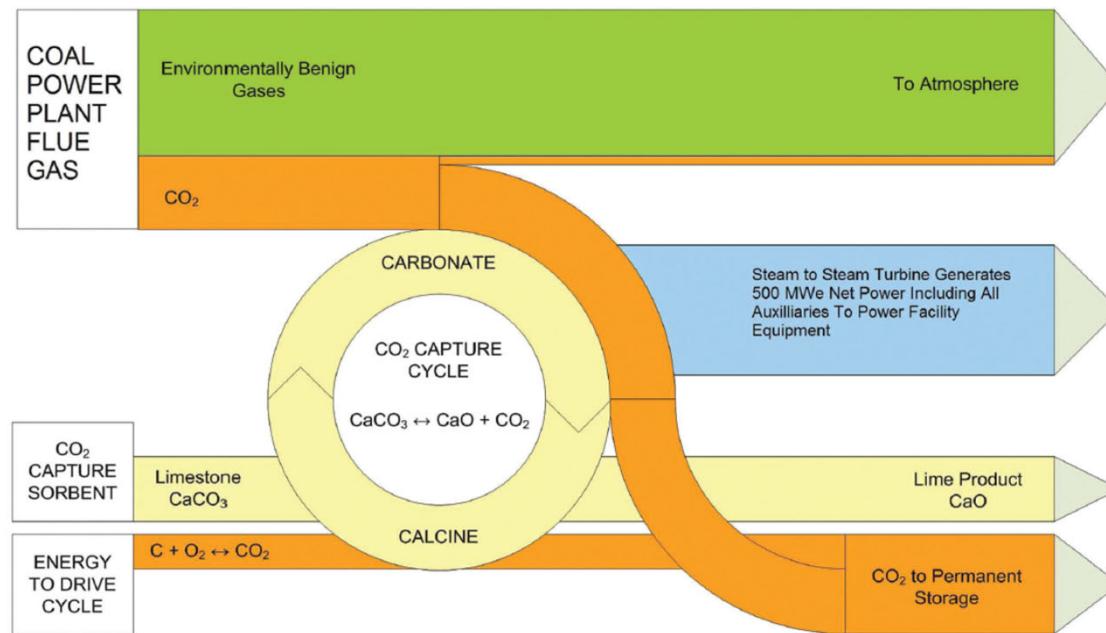
Table 7
Heat of reaction for oxidation of oxygen carriers and fuels.

Reaction	ΔH , kJ/mole (O_2)	Ratio to coal
$\text{O}_2 + \frac{1}{2}\text{CH}_4 \rightarrow \frac{1}{2}\text{CO}_2 + \text{H}_2\text{O}$	-401.7	-
$\text{O}_2 + 2\text{CO} \rightarrow 2\text{CO}_2$	-562.8	-
$\text{O}_2 + 2\text{H}_2 \rightarrow 2\text{H}_2\text{O}$	-498.5	-
$\text{O}_2 + \text{C} \rightarrow \text{CO}_2$	-403.3	-
$\text{O}_2 + \text{coal} \rightarrow x\text{CO}_2 + y\text{H}_2\text{O}$	-405.1	1
$\text{O}_2 + 4\text{Fe}_3\text{O}_4 \rightarrow 6\text{Fe}_2\text{O}_3$	-479	1.182
$\text{O}_2 + 4\text{FeTiO}_3 \rightarrow 2\text{Fe}_2\text{TiO}_5 + 2\text{TiO}_2$	-445	1.098
$\text{O}_2 + \text{ilmenite (from [36])} \rightarrow \text{Mn}_3\text{O}_4$	-468	1.156
$\text{O}_2 + 6\text{MnO} \rightarrow 2\text{Mn}_3\text{O}_4$	-449	1.108


doi.org/10.1016/j.apenergy.2015.04.057

Post combustion

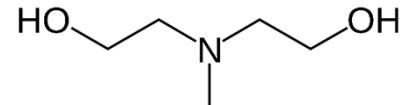
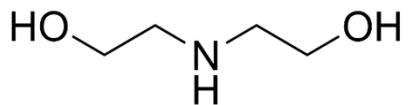
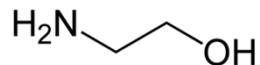
- Post combustion has 9-14% CO₂
- Four major approaches
 - Amines
 - Membranes
 - Ionic Liquids
- Originally (1930-1970) lime/cement (CaO) was used to react with CO₂ to form CaCO₃.
- Heating CaCO₃ to 1200K desorbs CO₂ and regenerates CaO. *This is why cement production is a CO₂ intensive process.*


	Gas	Oil	Coal
CO ₂	9 %	12%	14%
H ₂ O	19 %	11%	9%
O ₂	2 %	3%	3%
N ₂	70 %	74%	74%
Volume (m ³ / GJ fuel)	295	303	323

Wikipedia, thus rough estimate

Calcium looping

- The calcium 'looping' process works nicely integrated with lime production
- Limestone/Lime is effectively just a catalyst. However as the catalyst deactivates (lower surface area, etc) it can still be used as lime for cement production.

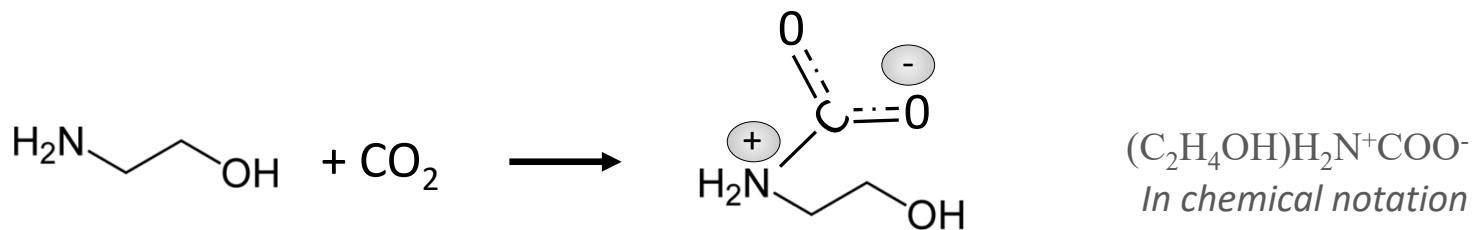
Post combustion – approaches

- CO_2 can either be captured via:
 - Absorption like O_2 in water
 - Reactions with the solvent like CO_2 converting into carbonates
- Often both approaches occur at the same time, thus complicating the CO_2 capture properties.

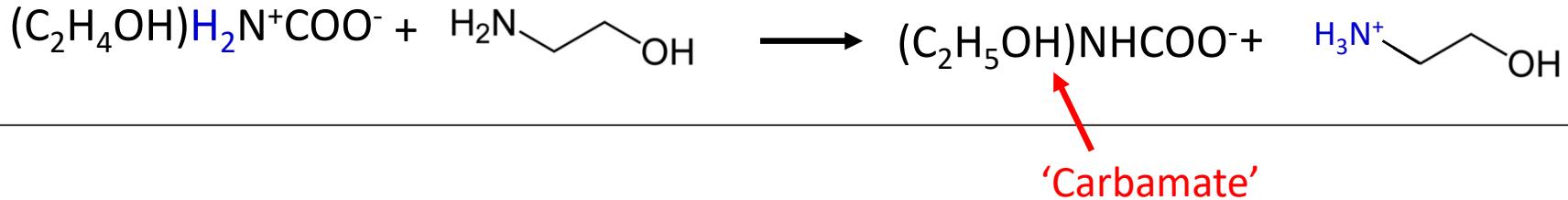
Post combustion – amine absorption

- Mono ethanolamine (MEA), di-ethanolamine (DEA) and N-methyldiethanolamine (MDEA)

- The N-H is the key to getting a good consumption of CO_2 .
- The capacity of saturated ethylenediamine is 32 g CO_2/Kg ($\text{H}_2\text{O}+\text{EDTA}$) . This is ~double MEA

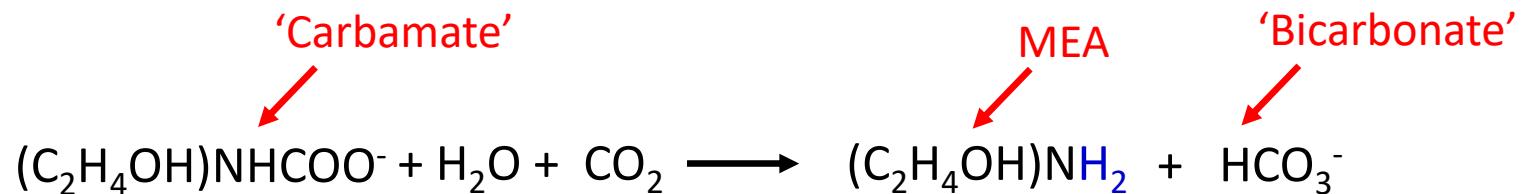

	MEA	DEA	MDEA
Rate constant for CO_2 adsorption ($\text{m}^3/\text{s}/\text{kmol}$)	7000	1200	3.5

DOI: [10.1002/cssc.200900293](https://doi.org/10.1002/cssc.200900293)


Amine adsorption- reaction mechanism

- The chemical reaction leads to a Zwitterion (i.e one molecule with a positive and a negative charge.)

Step #1

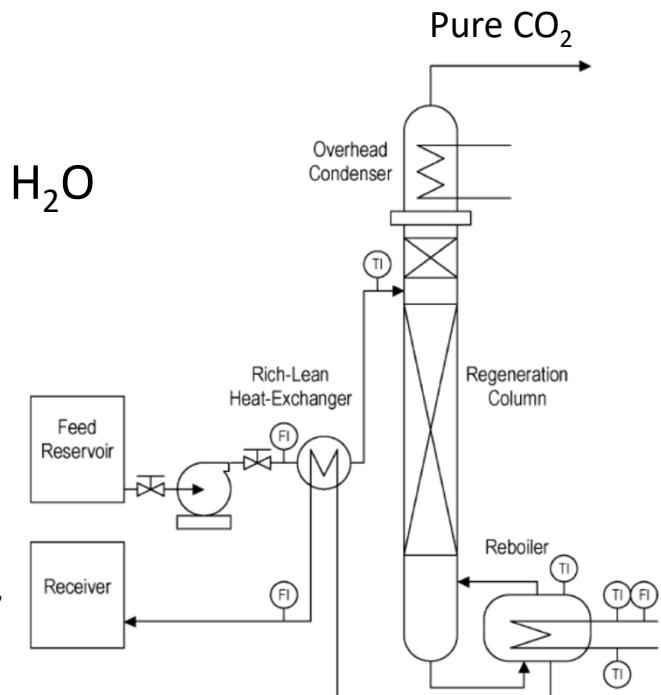

Step #2

- Because we pull off a 'H' to get carbamate, any amine we use must have at least one hydrogen attached (i.e. tertiary amines won't work)
- Note, we need 2 amines per 1 CO₂ captured

Carbamate vs. bicarbonate reaction

- A low stability constant and high pKa of the blue hydrogen favors a carbamate conversion to bicarbonate (The corresponding cation does not change)

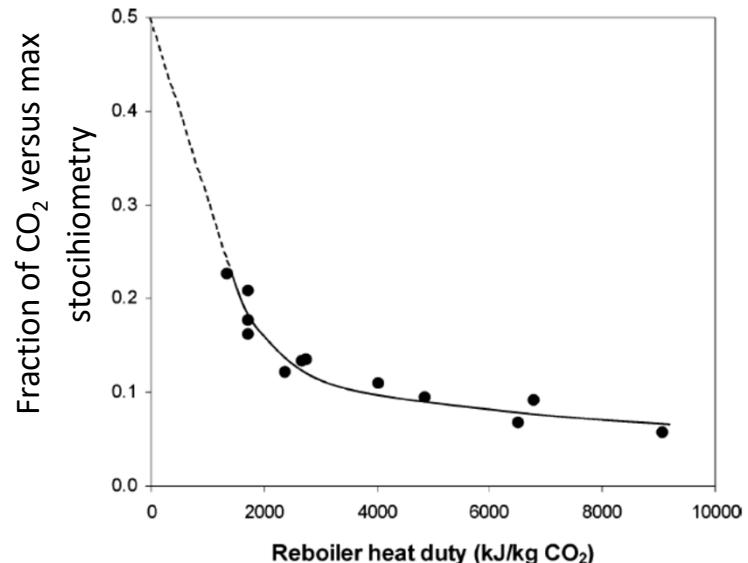
- The $\text{H}_3\text{N}^+ \text{---} \text{CH}_2\text{CH}_2\text{OH}$ from the previous slide combines with the bicarbonate for a stable salt.
- As we regenerate one MEA forming HCO_3^- , the net result is we have a 1:1 MEA to CO_2 absorption


Desorbing the CO₂ from the amine

- A relatively simple boiler removes the CO₂ from the amine.

- Determining the heat needed (i.e. ΔH) is quite complex.
- The solvent contains methyl amine, carbamate, bicarbonate, water, CO₂ all at different concentrations

'CO₂ adsorbed amine'
'Clean amine'


Ind. Eng. Chem. Res. 2005, 44, 4465-4473

Desorbing the CO₂ from the amine

- It is hard / pointless to desorb all the CO₂ from the MEA due to equilibrium factors
- Thus the recycled amine, typically has about 10% CO₂ still in it.

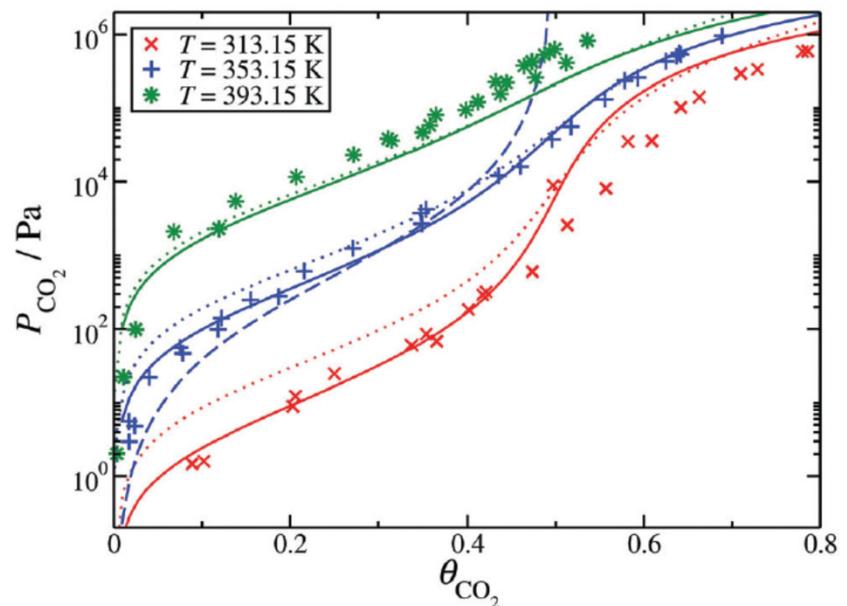
Solvent	Reboiler duty (GJ per t _{CO₂})
30 wt% MEA	3.6–4.0
40 wt% MEA	3.1–3.3
40 wt% (8 molal) piperazine (PZ)	2.9
Cansolv	2.3
32 wt% EDA	3.2–3.8
28 wt% AMP + 17 wt% PZ	3.0–3.2
MEA + MDEA (variable mix ratio)	2.0–3.7
Aqueous ammonia (NH ₃)	2.0–2.9*
Aqueous potassium carbonate (K ₂ CO ₃)	2.0–2.5
Amino acids	2.4–3.4*
DEEA + MAPA	2.1–2.4
DMCA + MCA + AMP	2.5 (not including extractior

Doi: [10.1039/c7ee02342a](https://doi.org/10.1039/c7ee02342a)

Figure 2. Reboiler heat duty of an aqueous DEA solution as a function of lean-CO₂ loading (4.0 kmol/m³ alkanolamine concentration, 0.50 mol/mol rich loading).

Ind. Eng. Chem. Res. **2005**, *44*, 4465–4473

Paradox of CO₂ adsorption


- If we want CO₂ adsorption by a species to get much less than 400 ppm adsorption, the equilibrium constant must be really high

- If you have a high equilibrium constant going forward, that means it is going to be really hard to desorb the CO₂ to regenerate your adsorbant.
- Effectively this is an entropy effect.

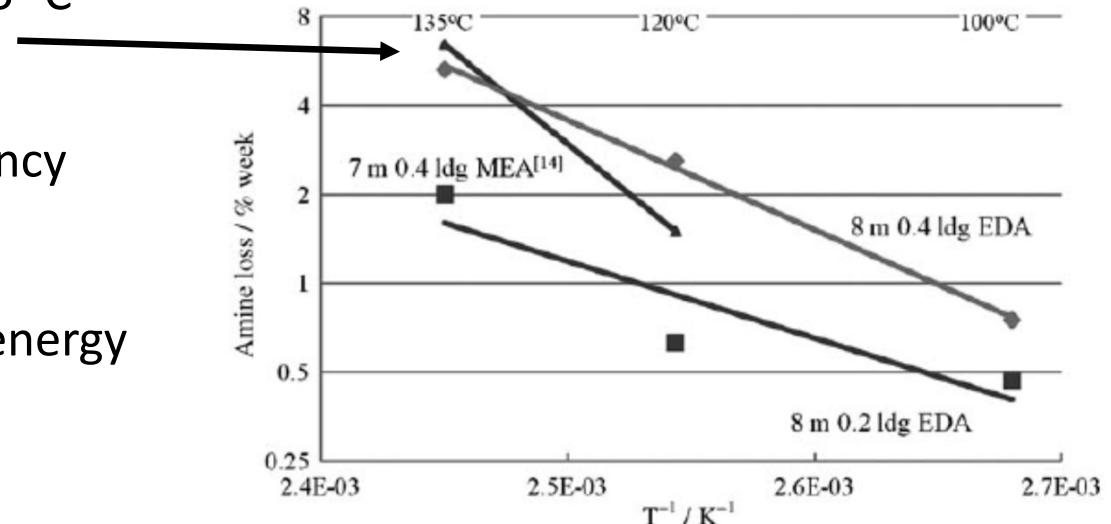
CO₂ solubility vs reacting with MEA

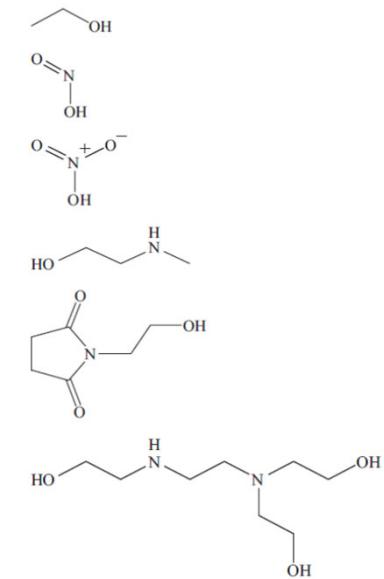
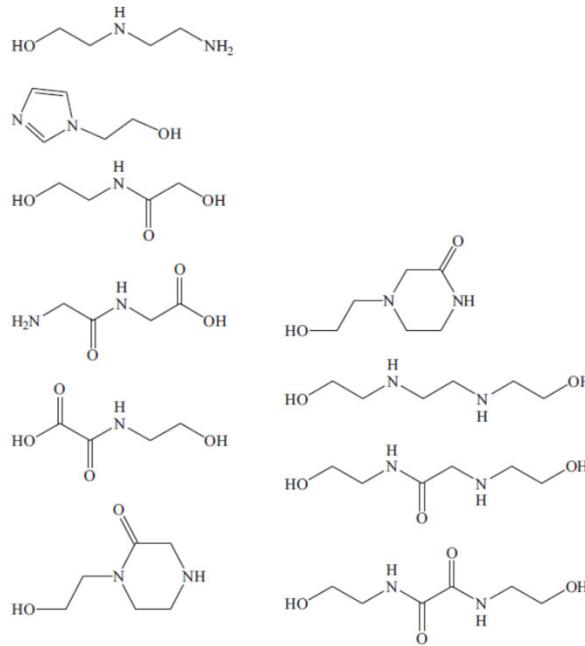
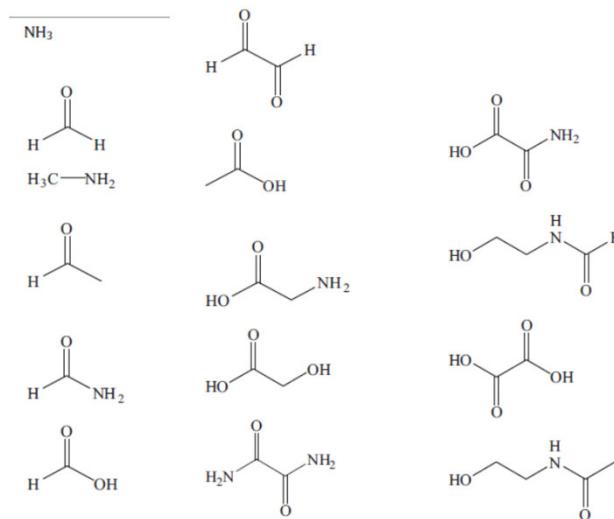
- CO₂ uptake by MEA occurs via both solubility (physical absorption) and by the chemical reaction shown previously
- Higher temperatures means more CO₂ concentration/pressure is needed to increase uptake (i.e. θ)
- The sharp uptake in the red curve is a shift from the chemical reaction to physical absorption.

Doi: [10.1039/c7ee02342a](https://doi.org/10.1039/c7ee02342a)

MEA- thermal degradation

- There are about 20 different species of degradation so it is a big mess
- MEA degrades at 6% per week at 135 °C
- Higher temp = greater energy efficiency
- Going from 90 °C to 150 °C reduces energy costs by 30%



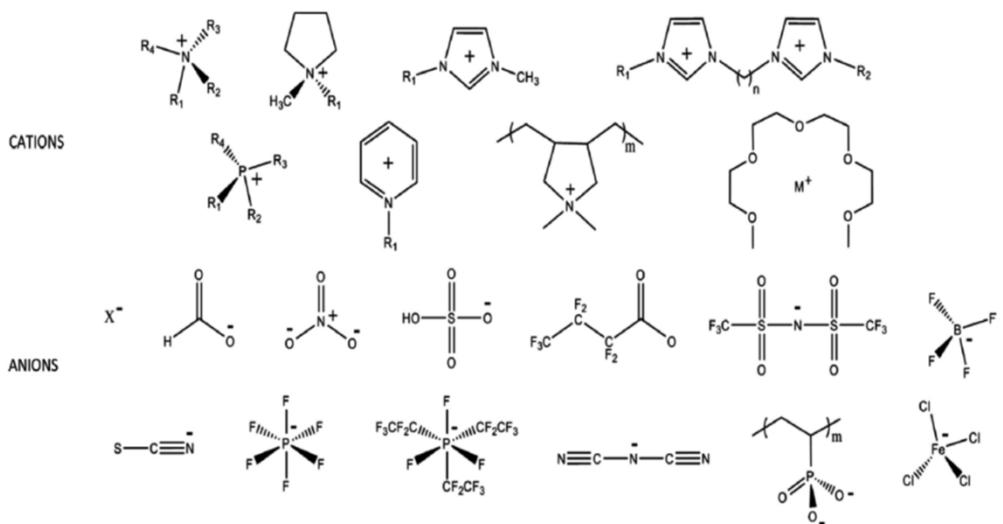



Figure 4. Thermal degradation rates of MEA and EDA.

Doi [10.1016/j.coche.2012.02.004](https://doi.org/10.1016/j.coche.2012.02.004)

DOI: [10.1002/cssc.200900293](https://doi.org/10.1002/cssc.200900293)

MEA- oxidative degradation

- Below are all the oxidative products.
- Anti-oxidants can be used to help prevent amine degradation

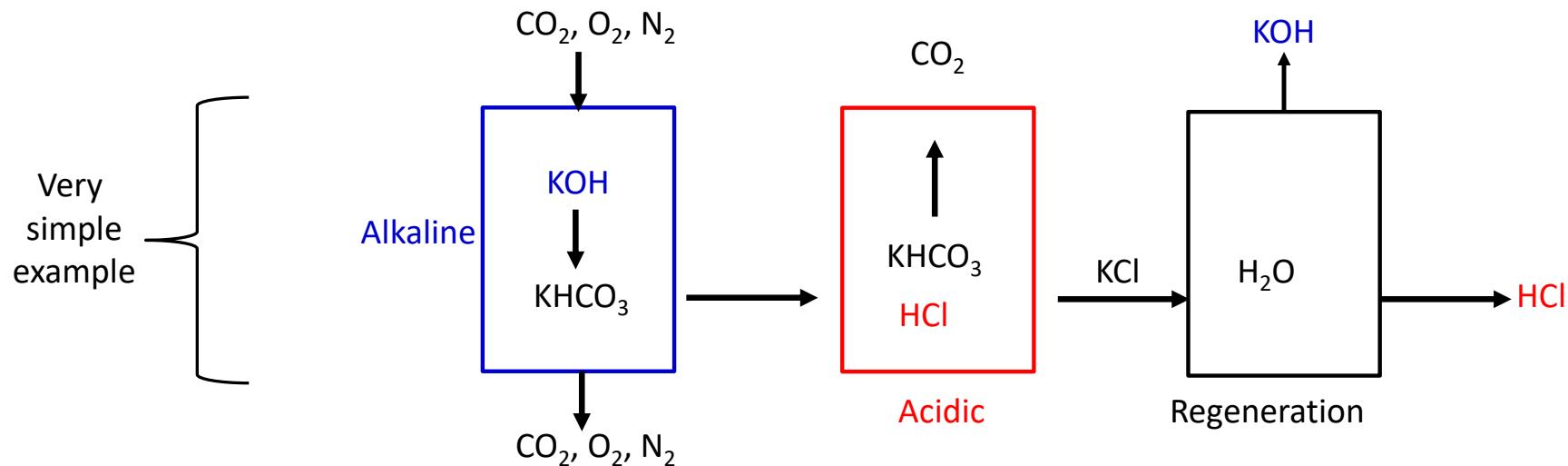


Int. J. Green. Gas Con. 10 (2012) 244–270

Ionic liquid approach

- Ionic liquids are ionic species that are liquid at room temperature
- The ionic nature entails they have low vapor pressures/ high boiling points
- This allows CO_2 to be absorbed at low temperatures/high pressures, and desorbed from solution at high temperatures/low pressures without evaporating the liquid

Or any gas, such as N_2 or O_2



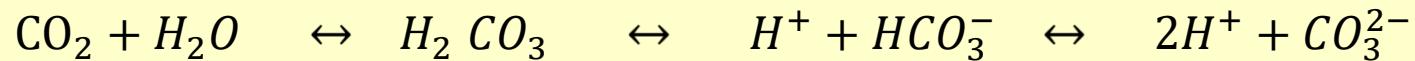
- Chemical stability is an issue.

[10.1039/c7ee02342a](https://doi.org/10.1039/c7ee02342a)

pH swing CO_2 capture

- The basis of this is that alkaline solutions absorb CO_2 and acidic solution degass CO_2 .
- Same concept as ocean acidification and CO_2 crossover in CO_2 electrolysis.
- It is the regeneration of water to an acidic + basic solution that costs us energy.

pH swing CO₂ capture - thermodynamics


- The pKa is the point where 50% of reactants and 50% of products.

$$pK_a =$$

$$6.5$$

$$pK_a =$$

$$10.6$$

- In theory we could absorb CO₂ from air at pH 6.51 and desorb CO₂ at pH 6.49. Thermodynamically this would be very efficient. What are two reasons why this would be not useful?

#1: Kinetics would be very slow

#2: A pKa of 6.5 assumes pure CO₂ absorbed/desorbed. We want to absorb 400 ppm CO₂ and desorb 100% CO₂.

$$pK_a = \log_{10} \frac{[HA]}{[A^-][H^+]}$$

pH swing CO₂ capture - thermodynamics

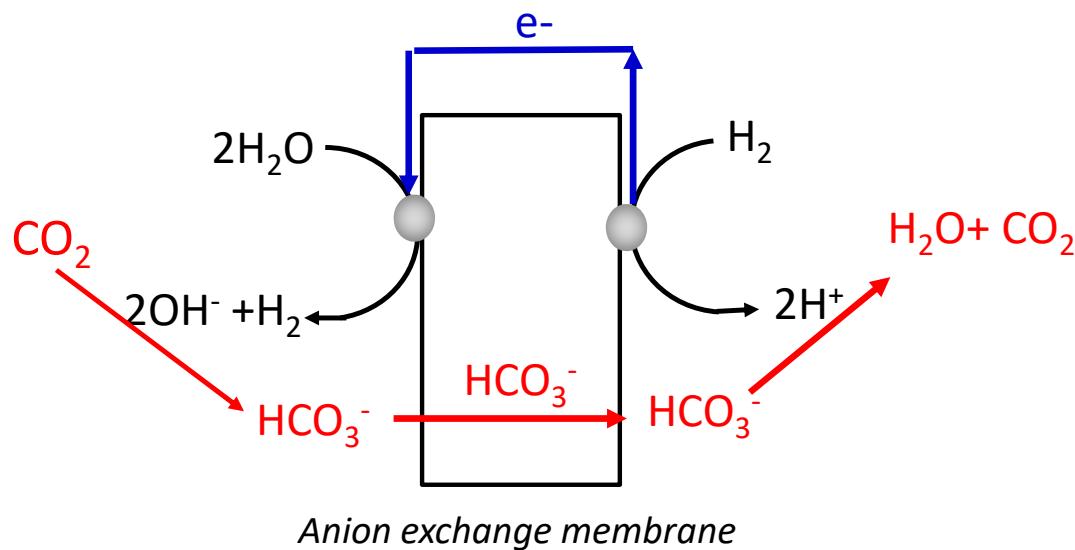
- How do we account for the 400 ppm to 100% CO₂ issue?
- We find the Gibbs Free Energy of the change in chemical equilibrium.
 - Already did this with 'Entropic energy for CO₂ concentration problem' at the beginning of the lecture. 19.4 kJ/mol CO₂.
- How do we relate pH to Gibbs free energy $H_2O \leftrightarrow H^+ + OH^-$

$$\Delta G = -RT \ln \left(\frac{[H^+][OH^-]}{[H_2O]} \right)_{Ref} = -5.71 \frac{kJ}{mol} * (\log[H^+] + \log[OH^-])$$

$$\Delta G = 5.71 \frac{kJ}{mol} * \Delta pH$$

This will effectively increase by a factor of 2, but will also change our pH by a factor of 2

pH swing CO₂ capture - thermodynamics


- From entropy we have 19.4 kJ/mol CO₂, and 1 pH unit gives us 5.7 kJ/mol.
- Thus the real minimum pH difference to go from 400 ppm to 100% CO₂ is:

$$\Delta pH_{minimum} = \frac{19.4 \frac{kJ}{mol}}{5.71 \frac{kJ}{mol}} = 3.4$$

- If we want reasonable driving force, we are probably looking at pH 4.
- Given HCO₃/CO₂ has negligible catalytic barrier energetically we should have minimal energy losses if we can design a good system.

pH swing CO_2 capture – practical example

- From fuel cell/electrolyzers we know H^+/H_2 redox reaction has minimal overpotential with Pt. (We also know Pt use is so minimal to not have any notable cost issues.)
- We can make an ‘electrolyzer’ that uses H^+/H_2 as a redox couple to induce a pH build-up

- The H_2 produced at the cathode, is used at the anode, thus no change in hydrogen

pH swing CO₂ capture – practical example

- If I have no overpotential, and no membrane resistance, what voltage will my device need to operate if I want a pH gradient of 4?

Nernst Equation

$$\Delta E = -\frac{RT}{nF} \ln \left(\frac{\text{Products}}{\text{Reactants}} \right) \longrightarrow \Delta E = 59mV * pH$$

$$\Delta E = 236 \text{ mV}$$

- What practical issues would we get that would make this device unworkable? (Think fuel cells)
 - Answer: O₂ from the inlet stream would reduce to water instead of water to H₂ (It is 1.23V easier). To resolve this you would need a pre-step to remove O₂.

Direct Air Capture (DAC)

- A major issue with direct air capture is mass transfer. You need a lot of 400 ppm CO₂ air to capture 1 ton of CO₂.
- If I want a 2m x 2m device to capture 1 ton/day CO₂, what velocity of air at 25 °C do I need to run through it.

$$1 \text{ ton } CO_2 = \frac{1,000 \text{ kg}}{44 \frac{\text{kg}}{\text{kmol}}} = 23 \text{ kmol}$$

$$V_{CO_2} = \frac{nRT}{P} = \frac{23 \text{ kmol} * 0.082 \frac{L \text{ atm}}{\text{mol K}} * 298K}{1 \text{ atm}} = 562,000L = 562 \text{ m}^3$$

$$\frac{V_{CO_2}}{V_{Total}} = \frac{400}{1 \text{ million}} \rightarrow V_{Total} = 1.4 \text{ million m}^3$$

Rendering of CO₂ capture

doi: [10.1126/science.aau4107](https://doi.org/10.1126/science.aau4107)

Direct Air Capture (DAC)

$$V_{Total} = 1.4 \text{ million } m^3$$

Seconds in a day = 3600 s/hr * 24 hr/day = 86,400 seconds = 0.0864 million seconds

Volumetric flow rate needed = $1.4/0.086 = 16.2 \text{ m}^3/\text{s}$

Area of device = $2\text{m} \times 2\text{m} = 4\text{m}^2$

$$v = \frac{16 \frac{m^3}{s}}{4m^2} = 4 \frac{m}{s}$$

Density of air

- How much power will that take to move the fans?

$\sim 1.2 \text{ kg/m}^3 \text{ at } 25^\circ\text{C}$

From Wind Energy lecture: $P_{wind} = P_{Fan} = \frac{1}{2} S \rho v^3 = \frac{1}{2} * 4 * 1.2 * 4^3 = 154\text{W}$

$$154\text{W} * 86400 \text{ s/day} * 1 \text{ kW/1000W} = 13,271 \text{ KJ/day} = 3.7 \text{ kWh/day}$$

This assumes no resistance due to the CO_2 absorber (unrealistic)

- Do we need to consider Betz limit for fans?

Ans = Yes, thus we need to divide power by 59% or lower ($3.7/0.59 = 6.3 \text{ kWh/day}$)

Direct Air Capture (DAC)- pore size

- The low CO₂ concentration means air resistance will be a much greater issue with DAC compared to flue gas capture
- Decreasing absorber density helps resolve this, but also means more volume (Capital costs) is needed

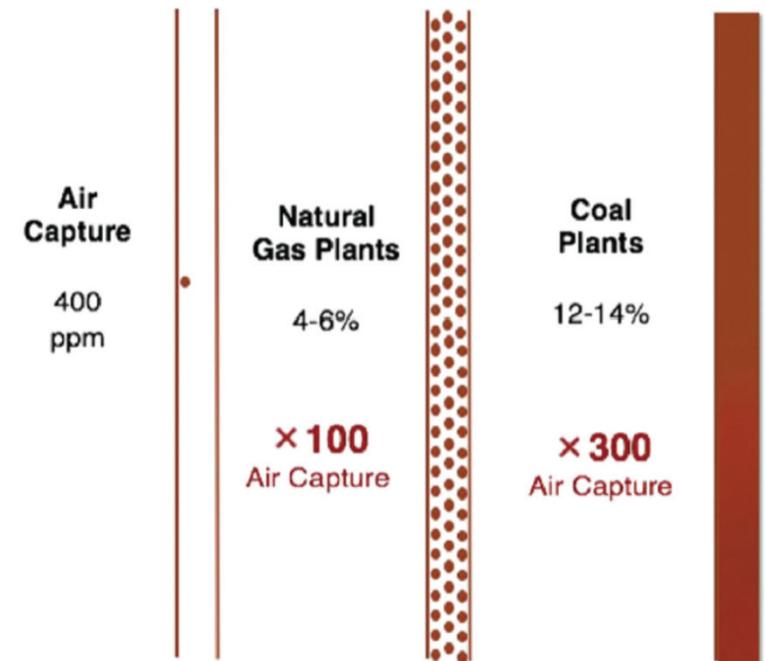


Fig. 26 In the case of adsorption, the optimal pore size depends upon the dilution of CO₂ in the gas mixture.

Doi: [10.1039/c7ee02342a](https://doi.org/10.1039/c7ee02342a)

Biggest companies

climeworks

- Swiss company. First company in DAC started in 2009. Demo plants in 2017, full commercial plants in 2021. Use MOF catalyst produced by Svante.

Carbon Engineering

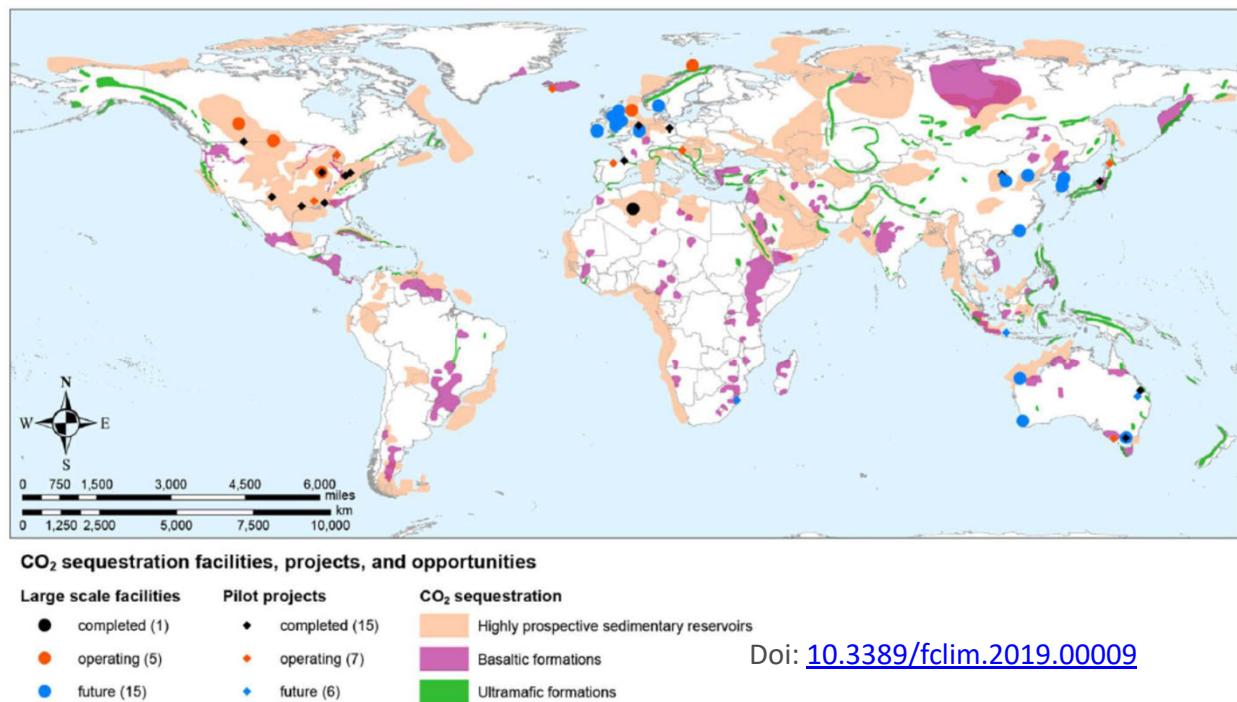
- Canadian company. Demo plant in 2015. KOH captures CO_2 , then a Ca-K carbonate switch, and then heat CaCO_3 to release CO_2 .

captura

- Focuses on ocean capture of CO_2 /carbonate. Uses a bipolar membrane approach. USA company derived from CalTech

AKER CARBON CAPTURE

- Norwegian company (with branch in Denmark). Use organic amines. Lot of work with flue gas. Is doing CO_2 capture in Kalundborg & Avedøre in Denmark.


CO₂ storage

There are better ideas
than this

CO₂ storage – overall numbers

- According to IPCC to maintain 1.5 C, we should sequester 125 Gton by 2100.
- The combined underground storage capacity in saline aquifers and hydrocarbon reservoirs is estimated to range between 5,000 and 25,000 Gton CO₂.
- The cheapest storage costs are said to be 7-30 \$/ton CO₂.

CO₂ storage – Overall numbers

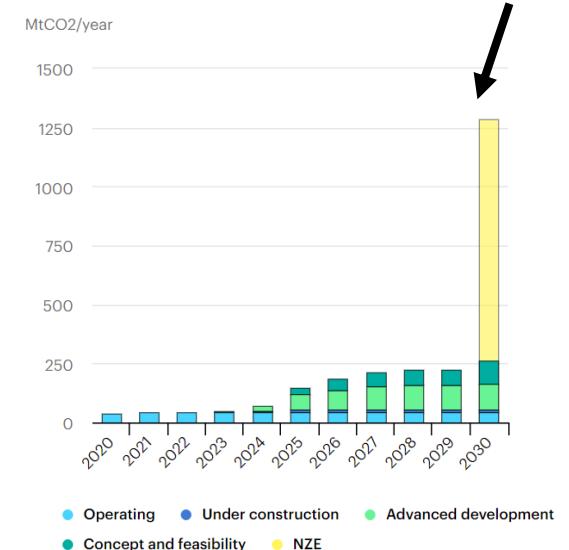
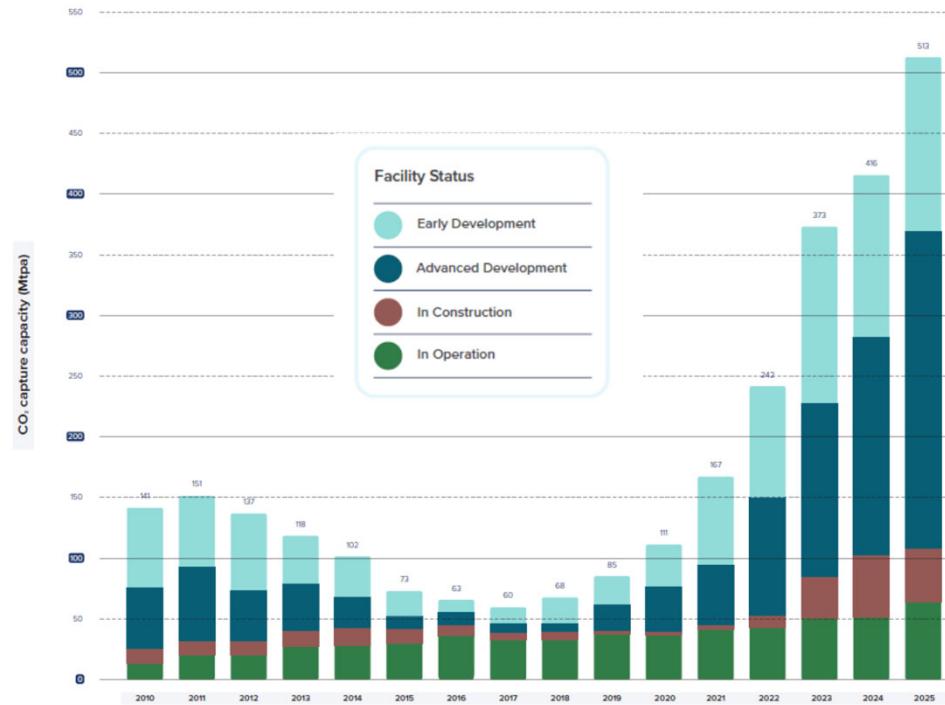

- According to IPCC to maintain 1.5 C, we should sequester 10 Gton/yr.
- Storing capacity is 64 MtonCO₂/year (as of July 2025) for pure CCS.
- 28 Mton/yr CO₂ ‘storage’ for enhanced oil recovery

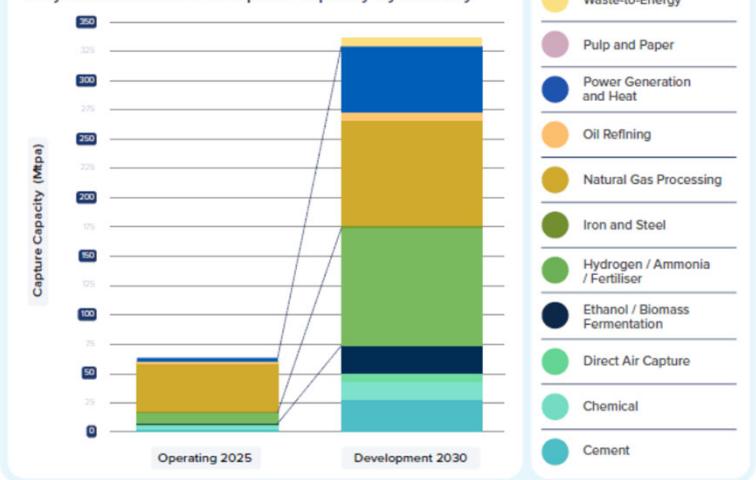
TABLE 1 | Global CO₂ sequestration projects for climate change mitigation (Rutqvist et al., 2010; Vasco et al., 2010; Elken et al., 2011; Shi et al., 2013; McGrail et al., 2014; Gislason et al., 2018; Marieni et al., 2018; Global CCS Institute, 2019; National Academies of Sciences Engineering Medicine, 2019).

Project	CO ₂ source	Date	CO ₂ injection rate (Mt/yr)	Observations
CO₂ SEQUESTRATION IN SEDIMENTARY FORMATIONS				
Sleipner Offshore Norway	Natural gas processing	1996–present	1	1st project injecting supercritical CO ₂ in a saline aquifer for long-term storage
In Salah Algeria	Natural gas processing	2004–2010	0.7	• Large pressure build-up in the reservoir • Unexpected geomechanical deformation
Snohvit Offshore Norway	Natural gas processing	2008–present	1	Fast decrease in CO ₂ injectivity, remedied by injecting into a different interval
Decatur Illinois, United States	Chemical production	2011–2014	0.3	
		2017–present	1	
Quest Alberta, Canada	Power generation	2015–present	1.2	
Gorgon Barrow Island, Australia	Natural gas processing	Under construction	3.4–4	
CO₂ SEQUESTRATION IN BASALT FORMATIONS				
CarbFix Iceland	Geothermal power generation Direct air capture	2012–2016	200 tCO ₂	Ending reason: upscaling of the project
		2014–present	6,500 tCO ₂ /yr	• Alternated injections of CO ₂ and water, so that CO ₂ entirely dissolves in water at depth • Co-mineralization of carbon and sulfur
Wallula Washington State, United States		2009–2013	977 tCO ₂	Injection of supercritical CO ₂

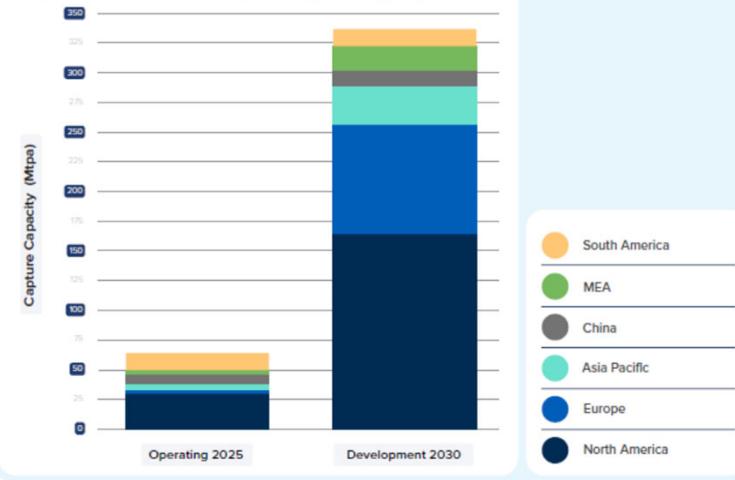
Doi: [10.3389/fclim.2019.00009](https://doi.org/10.3389/fclim.2019.00009)


IEA version of net zero
(10x lower than IPCC value)

IEA Data


CO₂ storage – Overall numbers

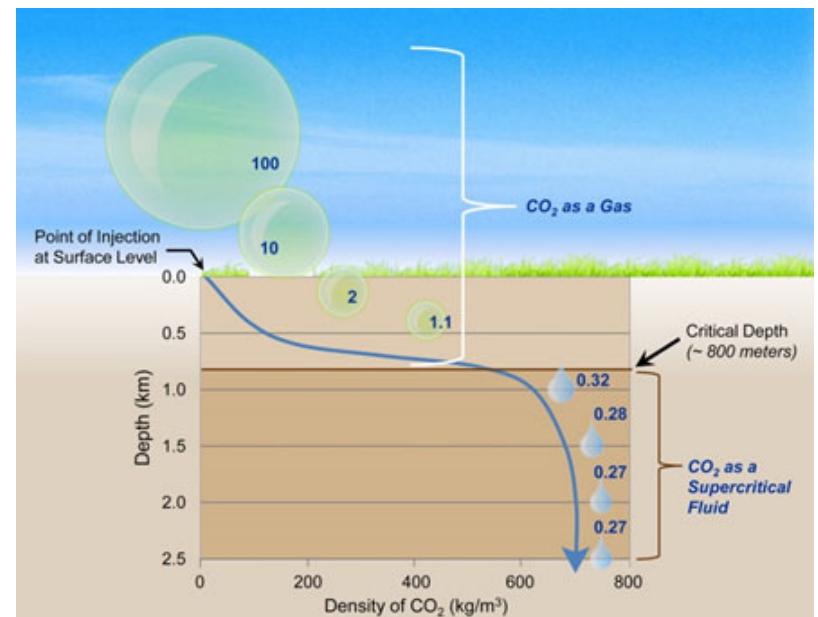
CO₂ capture capacity of commercial CCS facility pipeline since 2010



Global Status of CCS Report, 2025

Projected estimates of capture capacity by industry

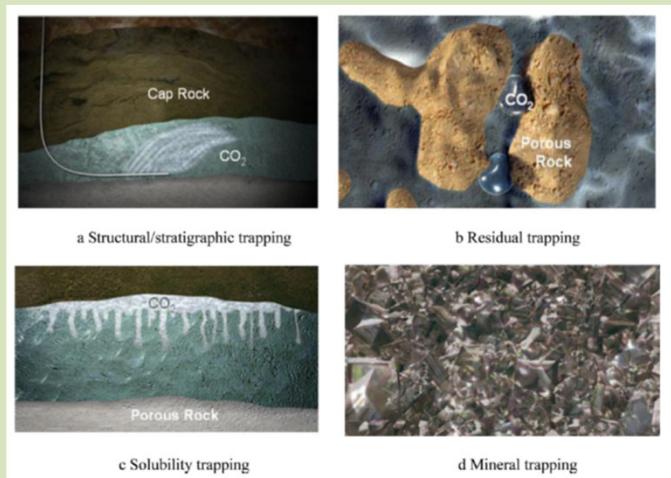
Projected estimates of capture capacity by region

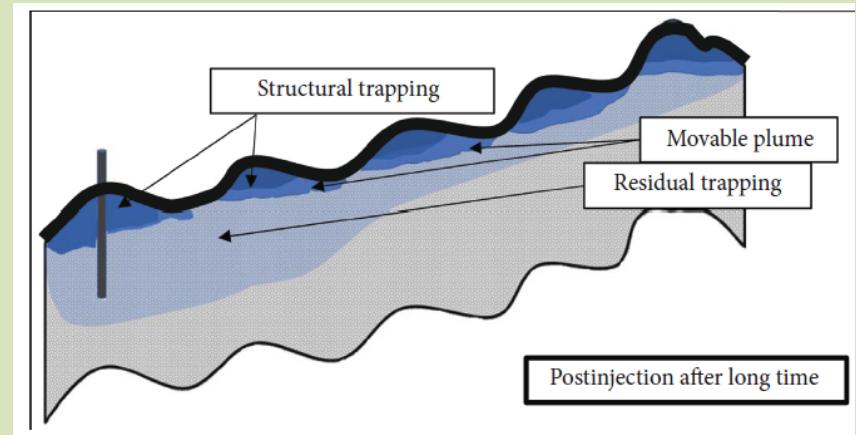


CO₂ storage - Underground

- CO₂ becomes supercritical at 31 °C and 73 atm

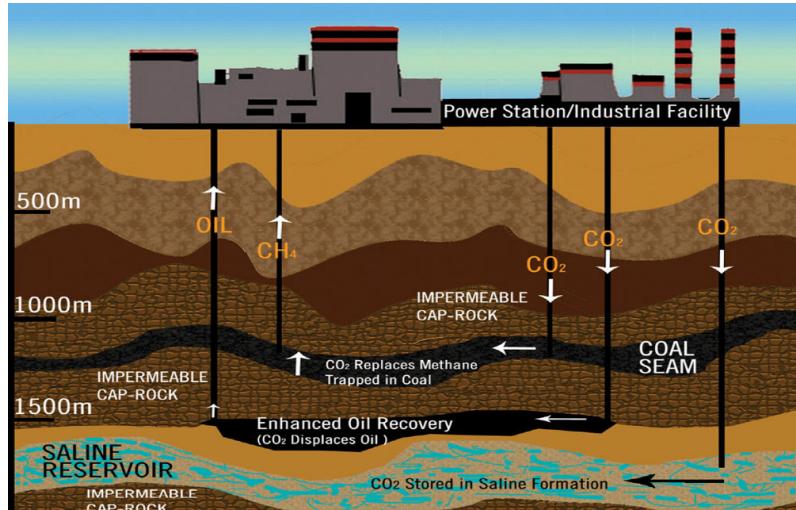
CO ₂ State	Temperature (K)	Pressure (bar)	Density (kg/m ³)
Liquid	298	100	819
Supercritical	305	300	941
Supercritical	350	80	164

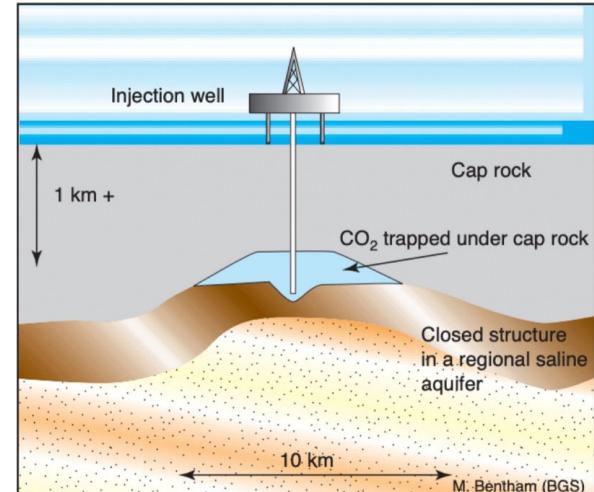

- The deeper we go into the Earth, the higher the natural temperature and pressure
- 800m into Earth, should give us a supercritical temperature (i.e > 31 ° C)


Netl.doe.gov

CO₂ Storage - methods

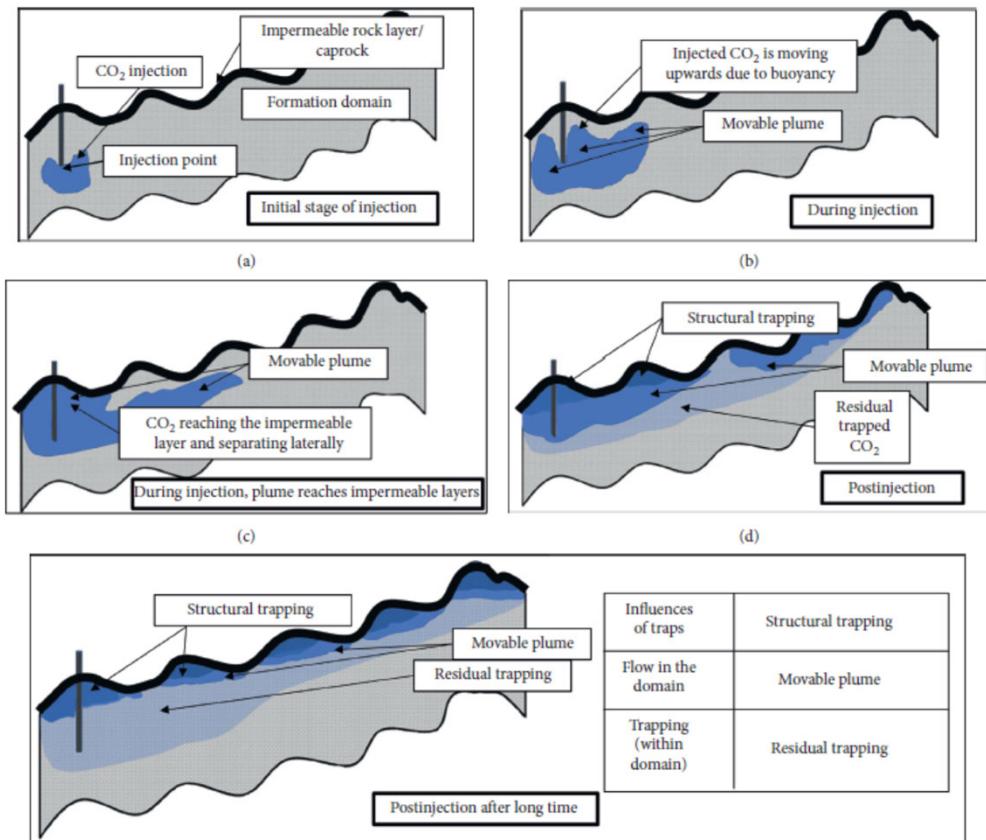
- The 4 major types of CO₂ storage are
 - Structural trapping
 - Residual trapping
 - Solubility trapping
 - Mineral trapping


Doi: [10.1016/j.joei.2014.03.032](https://doi.org/10.1016/j.joei.2014.03.032)


- Structural trapping is trapped like a bottle, whereas residual is trapped like in a sponge

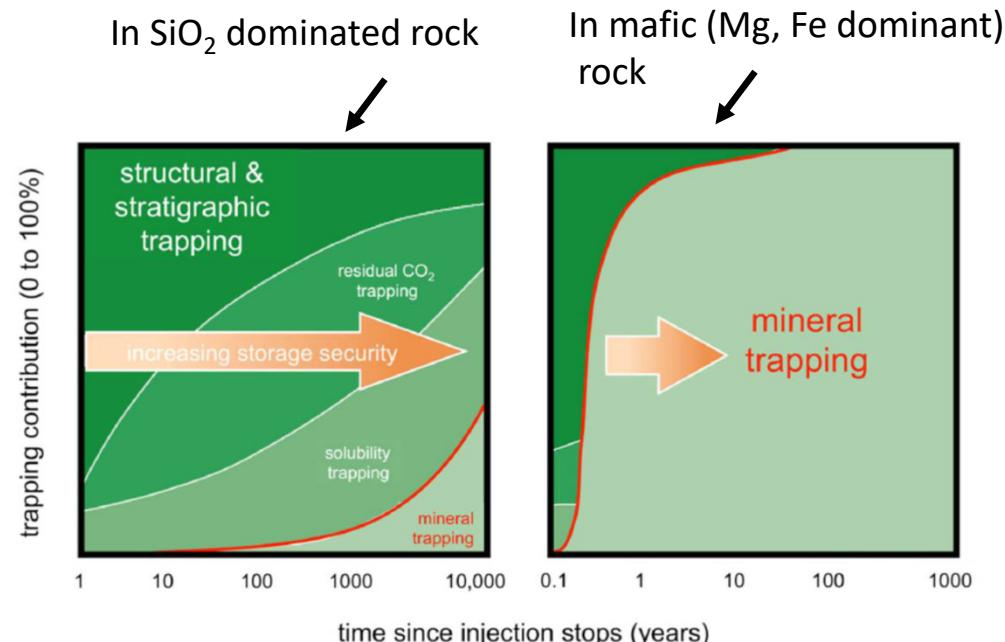
Reservoir rocks vs. Caprocks

- Caprocks are solid and on top, whereas reservoir rocks are porous and on the bottom
- Caprocks are best as anhydrite (CaSO_4) or low permeability carbonate rocks.
- Reservoir rocks are best as sandstone (SiO_2), limestone (CaCO_3), dolomite (CaMgCO_3), or basalt (lava).


[Link](#)

Doi:[10.2516/ogst:2005038](https://doi.org/10.2516/ogst:2005038)

CO₂ plumes and modeling


- The mass transfer of CO₂ from pipe to throughout the reservoir is important.
- As every reservoir is different, thus each a unique CO₂ diffusion and thus storage rate.
- The general trend is a movable plume goes through and a slower residual trapping builds from that

Doi: [10.1155/2021/7762127](https://doi.org/10.1155/2021/7762127)

CO₂ storage - Underground

- CO₂ starts as physically stored, but then gets slowly mineralized
- Residual trapping is replacing fluids that was in rock pores via capillary forces.
- Once in the reservoir the CO₂ soubilizes in the aqueous solution
- Finally it reacts to form stable carbonate species.

Doi: [10.3389/fclim.2019.00009](https://doi.org/10.3389/fclim.2019.00009)

Learning Objectives

- How plants capture CO₂
- How industry captures CO₂ currently
- How direct air capture works
- How pH swing CO₂ capture works
- Physics behind CO₂ storage

Exercises

1. Determine the Gibbs free energy difference going from MnO and CO₂ to MnCO₃. This should give perspective on how effective CO₂ mineralization can be.
2. The drag coefficient for a species is $F_D = \frac{1}{2}\rho v^2 C_D A$ If I have a drag coefficient of 5, the density of air is 1.2 kg/m³, operating at the Betz limit and the fan is 1m thick, how much extra power will I need for the direct air capture fans that we calculated for as an in-class exercise? Assume same velocity and area of the device. If we double the air flow (i.e. amount of CO₂ captured/time) how would that effect the power of the fans?